A Semester-long Class Project on the *All-of-Us* Database

HAP 819 – George Mason University Guided by Prof. Alemi & Vladimir Franzuela Cardenas Presented by Mohammad Qodrati

Aim and Materials

- To use medical history of patients to screen for a cancer
- The All of Us "Researcher Workbench" platform
 - The Registered Tier Dataset v7
 - The Cloud analysis environment
- R (programming language)

The All of Us Research Initiative

- Started in 2015
- Individualized medicine
- 1 million volunteers in the US
- Genetic and health data
- Sources:
 - Surveys on lifestyle & environment
 - EHR
 - Spot Labs and Physical measurements
 - Wearable devices

The Previously

Load datasets

df_A <- readr::read_csv("./data/df_A.csv") # main demographics
df_B <- readr::read_csv("./data/df_B.csv") # has prostate cancer
df_C <- readr::read_csv("./data/df_C.csv") # has any diseases
df_D <- readr::read_csv("./data/df_D.csv") # has been observed with death</pre>

Datasets: A & B & D

head(df_A, 5)

A da	A data.frame: 5 × 4								
	person_id		date_of_	birth	race	ethnicity			
	<dbl></dbl>		<	chr>	<chr></chr>	<chr></chr>			
1		1938-10	-08 00:00:00	UTC	PMI: Skip	PMI: Skip			
2		1944-09	-14 00:00:00	UTC	PMI: Skip	PMI: Skip			
3		1939-10	-29 00:00:00	UTC	PMI: Skip	PMI: Skip			
4		1999-08	-20 00:00:00	UTC	PMI: Skip	PMI: Skip			
5		1945-01	-06 00:00:00	UTC	PMI: Skip	PMI: Skip			

head(df_B, 5)

A data.frame: 5 × 3

1

person_id	standard_concept_code	condition_start_datetime
<int></int>	<dbl></dbl>	<chr></chr>
	4.36381e+14	2018-12-26 00:00:00 UTC
	4.36381e+14	2020-05-18 00:00:00 UTC
	2.54901e+08	2020-12-11 00:00:00 UTC
	2.54901e+08	2018-07-22 12:01:00 UTC
	2.54901e+08	2016-09-20 05:00:00 UTC
	X	

head(df_D, 5)

١d	data.frame: 5 × 2					
	person_id		observation_datetime			
	<int></int>		<chr></chr>			
1		20	21-04-14 04:26:00 UTC			
2		20	20-03-24 14:47:29 UTC			
3		20	21-09-15 23:40:30 UTC			
4		20	020-11-28 22:33:44 UTC			
5		20	22-05-21 00:49:15 UTC			

- Date-time conversions
- Joins

Code(s) of the Outcome Disease(s)

Dataset C

- Contained all diseases.
- Should have been <u>excluded</u>:
 - The OUTCOME disease(s) (already in dataset B)
 - Diseases happened AFTER the outcome disease(s)

h	ead(df_C	, 5)							
A da	A data.frame: 5 × 4								
	person_id	standard_concept_name	standard_concept_code	condition_start_datetime					
	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>					
1		Eustachian tube disorder	69494008	2019-08-02 06:00:00 UTC					
2		Vitreous hemorrhage	31341008	2015-05-27 05:00:00 UTC					
3		Recurrent major depressive episodes, moderate	191611001	2018-02-21 06:00:00 UTC					
4		Low tension glaucoma	50485007	2016-04-09 00:00:00 UTC					
5		Sepsis without septic shock	789043007	2022-03-23 06:00:00 UTC					

Date-time Conversions

Change date_of_birth to a datetime format
df_A <- df_A %>%
 mutate(date of birth = lubridate::ymd hms(date of birth))

Change concept codes to string instead of double which is shown with scientific notion
df_B\$standard_concept_code <- as.character(df_B\$standard_concept_code)</pre>

```
# Change condition_start_datetime to datetime format
df_B <- df_B %>%
    mutate(condition_start_datetime = lubridate::ymd_hms(condition_start_datetime))
```

Change concept codes to string instead of double which is shown with scientific notion
df_C\$standard_concept_code <- as.character(df_C\$standard_concept_code)</pre>

```
# Change condition_start_datetime to datetime format
df_C <- df_C %>%
    mutate(condition_start_datetime = lubridate::ymd_hms(condition_start_datetime))
```

```
# Change observation_datetime to datetime format
df_D <- df_D %>%
    mutate(date_of_death = lubridate::ymd_hms(observation_datetime))
```

```
# Process df_D to get only one date_of_death per patient
df_D_unique <- df_D %>%
  group_by(person_id) %>%
  summarize(date_of_death = min(observation_datetime, na.rm = TRUE)) %>%
```

```
# Process df_B to get the date_of_first_diagnosis per patient
```

```
df_B_aggregated <- df_B %>%
group_by(person_id) %>%
summarize(date_of_first_diagnosis = min(condition_start_datetime, na.rm = TRUE)) %>%
ungroup()
```

df_final <- df_A

df_final <- left_join(df_final, df_D_unique, by = "person_id")</pre>

df_final <- left_join(df_final, df_B_aggregated, by = "person_id")</pre>

Social determinants of Health

The IDs of Persons with SDOH
patients_w_sdoh <- as.vector(read.csv('./data/df_persons_w_sdoh.csv'))
patients_w_sdoh <- patients_w_sdoh[[1]]</pre>

df_analysis_w_sdoh <- df_final %>%
 rowwise() %>%
 mutate(sdoh = if_else(person_id %in% patients_w_sdoh, 1, 0))

Exclude some diseases

Create list of unique standard_concept_codes of the cancer of interest from df_B and store in df_exclude df_exclude <- df_B %>% distinct(standard concept code)

Remove rows from df_C if condition_concept_id is in df_exclude (exclude prostate cancer from double counting)
df_C_filtered <- df_C %>%
 anti_join(df_exclude, by = "standard_concept_code")

```
    # Remove rows in df_C where disease happened after cancer diagnosis
    df_C_filtered <- df_C_filtered %>%
    left_join(
        df_analysis %>% select(person_id, date_of_first_diagnosis), by = "person_id") %>%
    filter(
        is.na(date_of_first_diagnosis) | condition_start_datetime <= date_of_first_diagnosis
    ) %>%
    select(-(date_of_first_diagnosis))
```


Person-Outcome Data frame

```
df_person_vs_the_cancer <- df_analysis_w_sdoh %>%
    mutate(
        OUTCOME_Cancer = if_else(is.na(date_of_first_diagnosis), 0, 1)
        ) %>%
        select(c('person_id', 'OUTCOME_Cancer'))
```

Feature Construction

Grouping diseases into body systems using SNOMED-CT Hierarchy

Dataset of "Disease – Disease Group"s

length(unique(df_disease_grouped\$disease_group))

Add "Disease Group" column, ...

A data.frame: 5 × 5

	person_id	standard_concept_name	standard_concept_code	condition_start_datetime	disease_group
	<dbl></dbl>	<chr></chr>	<chr></chr>	<dttm></dttm>	<int></int>
1		Eustachian tube disorder	69494008	2019-08-02 06:00:00	362966006
2		Vitreous hemorrhage	31341008	2015-05-27 05:00:00	928000
3		Recurrent major depressive episodes, moderate	191611001	2018-02-21 06:00:00	118940003
4		Low tension glaucoma	50485007	2016-04-09 00:00:00	118940003
5		Sepsis without septic shock	789043007	2022-03-23 06:00:00	0

... vs. altering the prev.-built column

```
# Add a new column called disease group and initialize with NA character
 # To be used later for further aggregation to create dummy variables
 df C aggregated <- df C aggregated %>%
   mutate(disease group = NA character )
 # Create the list of disease groups we need
 disease groups <- df disease grouped$Code
 # Iterate over each row of df C aggregated to update disease group
 df_C_aggregated <- df_C_aggregated %>%
   rowwise() %>%
   mutate(disease group = ifelse(
     standard concept code %in% disease groups,
     as.character(standard concept code),
     disease group
   )) %>%
   ungroup()
```



```
# Turn all 'character' variables into 'categorical (factors)' ones
df_C_grp_factorized <- df_C_grp
df_C_grp_factorized$disease_group <- as.factor(df_C_grp_factorized$disease_group)
df_C_grp_factorized$standard_concept_name <- as.factor(df_C_grp_factorized$standard_concept_name)
df_C_grp_factorized$standard_concept_code <- as.factor(df_C_grp_factorized$standard_concept_code)</pre>
```

```
df C grp named <- df C grp factorized %>%
   mutate(disease group =
               as.factor(case match(disease group,
                               '0' ~ 'dz others',
                               '928000' ~ 'dz MSK',
                               '42030000' ~ 'dz GU',
                               '49483002' ~ 'dz MDSTN',
                               '49601007' ~ 'dz CV',
                               '50043002' ~ 'dz Resp',
                               '53619000' ~ 'dz Digest',
                               '79604008' ~ 'dz BRST',
                               '95351003' ~ 'dz mucus',
                               '118940003' ~ 'dz NRVS',
                               '128598002' ~ 'dz Integ',
                               '362966006' ~ 'dz Audi',
                               '362969004' ~ 'dz ENCRN',
                               '362971004' ~ 'dz_Lymph',
                               '414027002' ~ 'dz HematoP',
                               '414030009' ~ 'dz IMUN'
                         )))
```

Keep only 1 occurrence of each disease

```
# Only one occurrnce of each disease per patient, without considering the times
df_one_of_each_dz <- df_C_grp_named %>%
    distinct(
        person_id,
        standard_concept_name,
        disease_group,
        .keep_all = TRUE
    )
```

or / versus

```
* # # The "First in time" Occurrence of each Disease
df_first_of_each_dz <- df_C_grp_named %>%
select(person_id, standard_concept_name, disease_group)
summarize(
    first_timer = min(condition_start_datetime),
    .by = c(person_id, standard_concept_name, disease_group)
    )
```


Add the Outcome column [and sort]

df_one_of_each_dz_with_OUTCOME <- df_one_of_each_dz %>%
<pre>left_join(df_person_vs_the_cancer, by="person_id") %>%</pre>
arrange(person_id,
disease_group,
standard_concept_name,
$.by_group = TRUE)$

person_i	standard_concept_name	standard_concept_code	condition_start_datetime	disease_group	OUTCOME_Cancer
<chr< th=""><th><fct></fct></th><th><fct></fct></th><th><dttm></dttm></th><th><fct></fct></th><th><dbl></dbl></th></chr<>	<fct></fct>	<fct></fct>	<dttm></dttm>	<fct></fct>	<dbl></dbl>
1	Anorectal disorde	426867001	2020-02-11 00:00:00	dz_Digest	0
2	Congenital anomaly of intestinal trac	126764002	2020-03-16 00:00:00	dz_Digest	0
3	Internal hemorrhoids grade I	721704005	2020-02-16 00:00:00	dz_Digest	0
4	Chronic prostatitie	19905009	2020-01-04 00:00:00	dz_GU	0
5	Hematuria syndrome	53298000	2020-06-06 00:00:00	dz_GU	0
6	Microscopic hematuria	197940006	2020-07-14 00:00:00	dz_GU	0
7	Diaphragmatic hernia	39839004	2020-03-16 00:00:00	dz_MSK	0
8	Organic mental disorde	111479008	2012-07-22 05:00:00	dz_NRVS	0

Drop the date-time column

Associations: Outcome $(+/-) \leftrightarrow$ Exposure (+/-)

For each body system, estimate the association of the cancer with the history of the conditions falling within that body system.

Methods to this Aim

1. Calculation of Likelihood Ratios using the formula:

 $LR = \frac{Probability of finding in patients with disease}{Probability of the same finding in patients without disease}$

2. Fitting Statistical Models (Regression)

3. ...

Likelihood Ratio

LRs = Diagnostic Weights

FIG. 2.5 APPROXIMATING PROBABILITY. Clinicians can estimate changes in probability by recalling the LRs 2, 5, and 10 and the first 3 multiples of 15 (i.e., 15, 30, and 45). A finding whose LR is 2 increases probability about 15%, one of 5 increases it 30%, and one of 10 increases it 45% (these changes are *absolute* increases in probability). LRs whose values are 0.5, 0.2, and 0.1 (i.e., the reciprocals of 2, 5, and 10) decrease probability 15%, 30%, and 45%, respectively. Throughout this book, LRs with values \geq 3 or \leq 0.3 (represented by the shaded part of the diagnostic weight "ruler") are presented in boldface type to indicate those physical findings that change probability sufficiently to be clinically meaningful (i.e., they increase or decrease probability at least 20% to 25%).

	7
_	-

National Institutes of Health (https://pubmed.ncbi.nlm.nih.gov>

Does This Patient With

by AC Fanaroff · 2015 · Cited by 27 pain are ultimately diagnosed with a

	%b		
12,%	PPV	NP\	
)	32	12	
) 64	29	13	
) 96	23	10	
) 81	19	12	
) 45	17	12	
) 14	17	13	
) 39	16	9	
) 69	16	11	
) 29	15	10	
77	14	13	
65	13	13	
44	13	13	
77	13	13	
^f References 21, 23, 31, 40, 47, 49, 51, 54, 58, 60, 62, 70. ^g References 21, 23, 40, 49, 51, 54, 58, 60, 62, 70.			
		6.6	

Method 1: Calculation of Likelihood Ratios

standard_concept_name disease_group OUTCOME_Cancer dx_cnt

#	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	
	Ablepharon	dz_Audi	0	1	
	Ablepharon	dz_Audi	1	1	
df	Abnormal auditory perception	dz_Audi	0	640	
	Abnormal auditory perception	dz_Audi	1	36	
	Abscess of external auditory canal	dz_Audi	0	1	
	Abscess of external ear	dz_Audi	0	28	lcer) Cancer)

Risk or exposure factor	Disease	Non disease	
Exposure	а	b	a+b
Non exposure	c	d	c+d
	a+c	b+d	a+b+c+d

standard_concept_name disease_group OUTCOME_Cancer dx_cnt

<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
Ablepharon	dz_Audi	0	1
Ablepharon	dz_Audi	1	1
Abnormal auditory perception	dz_Audi	0	640
Abnormal auditory perception	dz_Audi	1	36
Abscess of external auditory canal	dz_Audi	0	1
Abscess of external ear	dz_Audi	0	28

names(df_outcome_neg_dz_counts)[3] <- 'n_dx_cnt'</pre>

standard	concept	name	disease group	OUTCOME	Cancer	dx cnt
						_

standard_concept_name disease_group p_dx_cnt n_dx_cnt

<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	1	dz_Audi	Ablepharon
640	36	dz_Audi	Abnormal auditory perception
40	3	dz_Audi	Acquired stenosis of external ear canal
15	4	dz_Audi	Active cochlear Ménière's disease
21	1	dz_Audi	Active cochleovestibular Ménière's disease
4	1	dz_Audi	Active vestibular Ménière's disease
32	1	dz_Audi	Acute actinic otitis externa
34	2	dz_Audi	Acute contact otitis externa

Non-existent "a / b" s

Wound of sternal region	dz_others	NA	1
X-linked hereditary disease	dz_others	NA	1
Yaws	dz_others	NA	7
Yaws gummata and ulcers	dz_others	NA	2
Yellow fever	dz_others	NA	5
Zinc deficiency	dz_others	NA	3
Zinc poisoning	dz_others	NA	1
Zygomycosis	dz_others	NA	8
1 1 0/.0/			

df_for_LRs <- df_outcome_dz_counts_joined %>%
 replace_na(list(p_dx_cnt = 0, n_dx_cnt = 0))

	Risk or exposure factor	Disease	Non disease	
LRs	Exposure	а	b	a+b
	Non exposure	c	d	c+d
		a+c	b+d	a+b+c+d
<pre>n_total_outcome_pos <- sum(df_person_vs_the_cancer\$OUTCOME_Cancer) n_total_outcome_neg <- length(df_person_vs_the_cancer\$OUTCOME_Cancer) - n_total cat('Total # of people with+++ the cancer of interest:', n_total_outcome_pos) cat('\nTotal # of people without the cancer of interest: 6122 Total # of people without the cancer of interest: 147460 df_with_LRs <- df_for_LRs %>% mutate(</pre>	l_outcome_pos) th considerin ome_neg)	a + c b + d	e subject	

names(df_with_LRs)[5] <- 'pLR'</pre>

pLR	n_dx_cnt	p_dx_cnt	disease_group	standard_concept_name
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
24.0868997	1	1	dz_Audi	Ablepharon
0.5352644	45	1	dz Audi	Atrophic nonflaccid tympanic membrane
NA	0	1	dz Audi	Bannayan syndrome
1.4117772	1945	114	dz_Audi	Benign paroxysmal positional vertigo
5.3526444	9	2	dz_Audi	Benign tumor of external ear
1.1846016	61	3	dz_Audi	Bilateral disorder of ears
8.0289666	3	1	dz_Audi	Bilateral disorder of mastoids
:	:	:	÷	:
0	1	0	dz_others	Visceral leishmaniasis
0	8	0	dz_others	Visual agnosia
0	1	0	dz_others	Vitamin A deficiency with corneal ulceration AND xerosis
0	10	0	dz_others	Vitamin A deficiency with ocular manifestation
0	4	0	dz_others	Vitamin B12 deficiency (non anemic)
0	14	0	dz_others	Vitamin B12 deficiency anemia due to malabsorption with proteinuria
0	1	0	dz_others	Vitamin C deficiency anemia
0	15	0	dz_others	Vitamin E deficiency
0	42	0	dz_others	Vitamin K deficiency
0	1	0	dz_others	Vortex keratopathy
0	1	0	dz_others	Vortex keratopathy of bilateral eyes

Method 2: Calculation of Odds Ratios

Split and Exclude

• Split based on the value of "disease group":

```
list_df_based_on_grp <- df_one_dz_grp_OUTCOME_no_time %>%
    split(f=df_one_dz_grp_OUTCOME_no_time$disease_group)
```

```
for (df_grp in list_df_based_on_grp) {
    write csv(df grp,
```

paste0('./data/new_ready_for_analysis/df_', unique(df_grp\$disease_group), '_all.csv'))

```
• Keep only those conditions with >30 occurrence:
```

```
for (df_grp in list_df_based_on_grp) {
    write_csv(
        df_grp %>%
        group_by(standard_concept_name) %>%
        filter(n() > 30),
            paste0('./data/new_ready_for_analysis/df_', unique(df_grp$disease_group), '_gt30.csv'))
```


File	Edit	View	Insert	Ce
New New Jupyt	Notebook Text Note text	k Book) 	
Open	l			
Make Save Rena Save	a Copy as me and Che	. Opens	a new wind	iow w
Reve	rt to Che	ckpoint	•	
Print Dowr	Preview nload as		•	
Trust	ed Noteb	ook		
Close	e and Hal	t		

□ □ df_dz_Audi_all.csv
□ □ df_dz_Audi_gt30.csv
□ □ df_dz_BRST_all.csv
□ □ df_dz_BRST_gt30.csv
□ □ df_dz_CV_all.csv
□ □ df_dz_CV_gt30.csv
□ □ df_dz_Digest_all.csv
□ □ df_dz_Digest_gt30.csv
□ □ df_dz_ENCRN_all.csv
□ □ df_dz_ENCRN_gt30.csv

Binary diseases, aggregated to just a row for a patient

```
bs load dum aggr save <- function(body system) {</pre>
    df gt30 <- read csv(paste0('./data/new ready for analysis/df dz ', body system, ' gt30.csv'))
    print(body system)
    df gt30 dum aggr <- bind cols(
        select(df gt30, c(1,5)),
        model.matrix(~standard concept name - 1, data = df gt30)
    ) %>%
        summarize(across(everything(),max), .by=person_id)
    print(table(df gt30 dum aggr$OUTCOME Cancer))
    write csv(df gt30 dum aggr,
               paste0('./data/new ready for analysis/df ', body system, ' gt30 dum aggr.csv'))
    return(df gt30 dum aggr)
```


Example: Disorders of Hematopoiesis

andard_concept_nameCommon variable agammaglobulinemia	standard_concept_nameDisorder characterized by eosinophilia	_nameDisorder standard_concept_nameDrug- standard_concept_nam by eosinophilia induced immunodeficiency induced neut		standard_concept_nameEosinophili asthm		standard
<dpl></dpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
0	0	0	1	0		
0	0	1	0	0		
0	0	0	0	1		
0	0	0	0	0		
0	0	0	0	0		
0	0	0	0	0		

Regress the outcome on diseases in each group

•	<pre>read_glm <- function df_dz_grp <- rea model <- glm(OUT</pre>	<pre>n(body_system) { ad_csv(paste0('./data/new_ready_for_analysis/df_', body_system, '_gt30_dum_aggr.csv')) </pre>					
	<pre>print(with(summa return(summary(m }</pre>	<pre>Rows: 1863 Columns: 31</pre>					
<pre>read_glm('HematoP') i Use `spec()` to retrieve the full column specification for this data. i Specify the column types or set `show_col_types = FALSE` to quiet this mess Warning message:</pre>							
	"glm.fit: fitted probabilities numerically 0 or 1 occurred"						
		<pre>[1] 0.08971026 Call: glm(formula = OUTCOME_Cancer ~ ., family = "binomial", data = select(df_dz_grp,</pre>					
		Deviance Residuals: Min 1Q Median 3Q Max -1.2037 -0.3687 -0.3308 -0.1979 3.2057					

· · · · · · · · · · · · · · · · · · ·	Estima 🔻	Std. Err 🔻	z value 🔻	Pr(> z ▼	v 0	DR ▼ pLR +
Chronic lymphoid leukemia, disease	1.74476	0.34441	5.066	4.07E-07 ***		5.724527424 3.679943010635595
B-cell chronic lymphocytic leukemia	-0.38172	0.36774	-1.038	0.2993		0.682686179 2.0605312432842915
Chronic lymphoid leukemia in remission	-0.09389	0.41978	-0.224	0.823		0.910382899 2.0072416421648702
Thalassemia	0.64707	0.42479	1.523	0.1277		1.909936509 1.952991868052306
Acute myeloid leukemia in remission	0.6422	0.72383	0.887	0.375		1.90065773 1.8178792230927123
Leukemia in remission	0.2938	0.67845	0.433	0.665		1.341515574 1.7624560760472026
Leukemia	0.30905	0.37078	0.834	0.4046		1.362130475 1.7204928361413168
Polycythemia vera (clinical)	0.11232	0.32355	0.347	0.7285		1.118870842 1.6984352356779668
Acute myeloid leukemia, disease	0.47944	0.39446	1.215	0.2242		1.615169654 1.5976004907026518
Acute lymphoid leukemia in remission	0.10029	0.60819	0.165	0.869		1.105491464 1.5640843964921063
Acute lymphoid leukemia	-0.05448	0.48164	-0.113	0.9099		0.946977448 1.5293269654589485
Congenital anomaly of spleen	-0.05081	0.56461	-0.09	0.9283		0.950459241 1.5293269654589485
Aplastic anemia	-0.1116	0.41179	-0.271	0.7864		0.894401947 1.3807776901516302
Disorder of transplanted bone marrow	-0.23545	0.55244	-0.426	0.67		0.790215173 1.353196612695418
Congenital absence of spleen	0.03866	0.63586	0.061	0.9515		1.039417022 1.2677315634725492
Lymphoid leukemia	-1.315	0.41433	-3.174	0.0015 **		0.268474323 1.1004167378365783
Acute leukemia	-0.59097	0.82868	-0.713	0.4758		0.553789848 0.9445843021952328
Heterozygous thalassemia	-0.62764	0.55848	-1.124	0.2611		0.533850202 0.8758872620355795
Myelofibrosis	-0.56618	0.73986	-0.765	0.4441		0.567689877 0.8758872620355795
Chronic myeloid leukemia	-0.74744	0.67796	-1.102	0.2703		0.47357736 0.5827475735317363
Sickle cell-hemoglobin C disease without crisis	0.50592	1.12449	0.45	0.6528		1.658510649 0.5601604582785683
Acute leukemia in remission	-1.49367	0.85408	-1.749	0.0803 .		0.224547054 0.5179978431393212
Beta thalassemia	-1.15619	1.04301	-1.109	0.2676		0.314682841 0.4817379941195688
Chronic myeloid leukemia in remission	-1.11187	1.18389	-0.939	0.3476		0.328943262 0.43794363101778977
Myeloid leukemia	-1.00903	1.0793	-0.935	0.3498		0.364572443 0.35950596576087224
Hemoglobin SS disease with crisis	-0.34356	1.1509	-0.299	0.7653		0.709240925 0.24831855366988081
Hemoglobin SS disease without crisis	-2.00995	1.10429	-1.82	0.0687.		0.133995374 0.15341974335018113
Glucose-6-phosphate dehydrogenase deficiency anemia	-14.7063	650.685	-0.023	0.982		4.10319E-07 0
Sickle cell-hemoglobin SS disease	-12.9694	637.538	-0.02	0.9838		2.33063E-06 0
(Intercept)	-2.76671	0.24997	-11.068	< 2e-16 ***		0.062868502

It's easy to lie with statistics. It's hard to tell the truth without statistics.

Andrejs Dunkels

