MEASURING UNCERTAINTY

Farrokh Alemi

This chapter describes how probability can quantify the degree of uncer-
tainty one feels about future events. It answers the following questions:

e What is probability?

e  What is the difference between objective and subjective sources of
data for probabilities?

e What is Bayes’s theorem?

¢ What are independence and conditional independence?

e How does one verify independence?

Measuring uncertainty is important because it allows one to make
trade-offs among uncertain events, and to act in uncertain environments.
Decision makers may not be sure about a business outcome, but if they
know the chances are good, they may risk it and reap the benefits.

Probability

When it is certain that an event will occur, it has a probability of 1. When
it is certain that an event will not occur, it has a probability of 0. When
there is uncertainty that an event will occur, it has a probability of 0.5—
or, a 50/50 chance of occurrence. All other values between 0 and 1 meas-
ure the uncertainty about the occurrence of an event.

The best way to think of probability is as the ratio of all ways an event
may occur divided by all possible outcomes. In short, probability is the
prevalence of the target event among the possible events. For example, the
probability of a small business failing is the number of small businesses that
fail divided by the total number of small businesses. Or, the probability of
an iatrogenic infection in the last month in a hospital is the number of
patients who last month had an iatrogenic infection in the hospital divided
by the number of patients in the hospital during last month. The basic prob-
ability formula is
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This book has a companion web site that features narrated presentations,
animated examples, PowerPoint slides, online tools, web links, additional readings,
and examples of students’ work. To access this chapter’s learning tools, go to
ache.org/DecisionAnalysis and select Chapter 3.

Number of occurences of event A

P(A) =

Total number of possible events

Figure 3.1 shows a visual representation of probability. The rectan-
gle represents the number of possible events, and the circle represents all
ways in which event A might occur; the ratio of the circle to the rectangle
is the probability of A.

Probability of Multiple Events

The rules of probability allow you to calculate the probability of multiple
events. For example, the probability of cither A or B occurring is calcu-
lated by first summing all the possible ways in which event A will occur
and all the ways in which event B will occur, minus all the possible ways in
which both event 4 and B will occur together (this is subtracted to avoid
double counting). This sum is divided by all possible outcomes. This con-
cept is shown in the Venn diagram in Figure 3.2. This concept is repre-
sented in mathematical terms as

P(A or B) = P(A) + P(B) - P(A and B).

The definition of probability gives you a simple calculus for com-
bining the uncertainty of two events. You can now ask questions such as
“What is the probability that frail clderly (age > 75 years old) or infant
patients will join our HMO?” According to the previous formula, this can
be calculated as

P(Frail elderly or Infant) =
P(Frail elderly) + P(Infant) — P(Frail elderly and Infant),

Because the chance of being both a frail elderly person and an infant
is 0 (i.e., the two events are mutually exclusive), the formula can be
rewritten as

P(Frail elderly or Infant) = P(Frail elderly) + P(Infant).
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This definition of probability can also be used to measure the prob-
ability of two events co-occurring (probability of event A and event B).
Note that the overlap between A and B is shaded in Figure 3.2; this arca
represents all the ways A and B might occur together. Figure 3.3 shows
how the probability of A and B occurring together is calculated by divid-
ing this shaded area by all possible outcomes.

Conditional, Joint, and Marginal Probabilities

The definition of probability also helps in the calculation of the probabil-
ity of an event conditioned on the occurrence of other events. In mathe-
matical terms, conditional probability is shown as P(A|B) and read as
probability of A given B. When an event occurs, the remaining list of pos-
sible outcomes is reduced. There is no longer the need to track events that
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are not possible. You can calculate conditional probabilities by restricting
the possibilities to only those events that you know have occurred, as shown
in Figure 3.4. This is shown mathematically as

P(A and B)

P(A|B)= 05)

For example, you can now calculate the probability that a frail eld-
erly patient who has already joined the HMO will be hospitalized. Instead
of looking at the hospitalization rate among all frail elderly patients, you
need to restrict the possibilities to only the frail elderly patients who have
joined the HMO. Then, the probability is calculated as the ratio of the
number of hospitalizations among frail elderly patients in the HMO to the
number of frail elderly patients in the HMO:

P(Hospitalized and Joined HMO)

P(Hospitalized| Joined HMO) =
' P(Joined HMO)
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Analysts need to make sure that decision makers distinguish between
joint probability, or the probability of A and B occurring together, and
conditional probability, or the probability of B occurring after A has
occurred. Joint probabilities, shown as P(A and B), are symmetrical and

not time based. In contrast, conditional probabilities, shown as P(A|B),
are asymmetrical and do rely on the passage of time. For example, the prob-
ability of a frail elderly person being hospitalized is different from the prob-
ability of finding a frail elderly person among people who have becn
hospitalized.

For an example calculation of conditional probabilities from joint
probabilities, assume that an analysis has produced the joint probabilities
in Table 3.1 for the patient being either in substance abuse treatment or
in probation.

Table 3.1 provides joint and marginal probabilities by dividing the
observed frequency of days by the total number of days examined. Marginal
probability refers to the probability of one event; in Table 3.1, these are
provided in the row and column labeled “Total.” For example, the mar-
ginal probability of a probation day, regardless of whether it is also a treat-
ment day, is 0.56. Joint probability refers to the probability of two events
occurring at same time; in Table 3.1, these are provided in the remaining
rows and columns. For example, the joint probability of having both a pro-
bation day and a treatment day is 0.51. This probability is calculated by
dividing the number of days in which both probation and treatment occur
by the total number of days examined.

If an analyst wishes to calculate a conditional probability, the total
universe of possible days must be reduced to the days that meet the con-
dition. This is a very important concept to keep in mind:

Conditional probability is a reduction in the universe of
possibilities.

Suppose the analyst wants to calculate the conditional probability of
being in treatment given that the patient is already in probation. In this
case, the universe is reduced to all days in which the patient has been in
probation. In this reduced universe, the total number of days of treatment

TABLE 3.1
Probation Day Not a Probation Day Total Joint
Probability of
Treatment Day 0.51 0.39 0.90 Treatment and
Not a Treatment Day 0.05 0.05 0.10 Probation

Total 0.56 0.44 1.00
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becomes the number of days of having both treatment and probation.
Therefore, the conditional probability of treatment given probation is

P(Treatment| Number of days in both treatment and probation
Probation) ~

Number of days in probation

Because Table 3.1 provides the joint and marginal probabilities,
the previous formula can be described in terms of joint and marginal
probabilities:

P(Treatment| P(Treatment and Probation) _ 051 0.93

Probation) = P(Probation) 0.56

The point of this example is that conditional probabilities can be
casily calculated by reducing the universe of possibilities to only those sit-
uations that meet the condition. You can calculate conditional probabili-
ties from marginal and joint probabilities by keeping in mind how the
condition has reduced the universe of possibility.

Conditional probabilities are a very useful concept. They allow you
to think through an uncertain sequence of events. If each event can be con-
ditioned on its predecessor, a chain of events can be examined. Then, if
one component of the chain changes, you can calculate the cffect of the
change throughout the chain. In this sense, conditional probabilities show
how a series of clues might forecast a future event. For example, in pre-
dicting who will join the HMO, the patient’s demographics (age, gender,
income level) can be used to infer the probability of joining. In this case,
the probability of joining the HMO is the target event. The clues are the
patient’s age, gender, and income level. The objective is to predict the
probability of joining the HMO given the patient’s demographics—in other
words, P(Join HMO|Age, gender, income level).

The calculus of probability is an easy way to track the overall uncer-
tainty of several events. The calculus is appropriate if the following simple
assumptions are met:

1. The probability of an event is a positive number between 0 and 1.

2. One event certainly will happen, so the sum of the probabilities of all
events is 1.

3. The probability of any two mutually exclusive events occurring equals
the sum of the probability of each occurring.
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Most decision makers are willing to accept these three assumptions,
often referred to by mathematicians as probability axioms.

If a set of numbers assigned to uncertain events meet these three
principles, then it is a probability function and the numbers assigned in
this fashion must follow the algebra of probabilities.

Sources of Data

There are two ways to measure the probability of an event:

1. One can observe the objective frequency of the event. For example,
you can sece how many out of 100 people who were approached
about joining an HMO expressed intent to do so.

2. The alternative is to rely on subjective opinions of an expert. In these
circumstances, ask an expert to estimate the strength of her belief
that the event of interest might happen. For example, you might ask
a venture capitalist who is familiar with new businesses the following
question: On a scale from 0 to 100, where 100 is for sure, how
strongly do you feel that the average employee will join an HMO?

Both approaches measure the degree of uncertainty about the suc-
cess of the HMO, but there is a major différence between them; One
approach is objective while the other is based on opinion. Objective fre-
quencies are based on observations of the history of the event, while a
measurement of strength of belief is based on an individual’s opinion, even
about events that have no history (e.g., What is the chance that there will
be a terrorist attack in our hospital?).

Subjective Probability

More than half a century ago, Savage (1954) and de Finetti (1937) argued
that the rules of probabilities can work with uncertainties expressed as
strength of opinion. Savage termed the strength of a decision maker’s con-
victions “subjective probability” and used the calculus of probability to
analyze these convictions. Subjective probability remains a popular method
for analyzing experts’ judgments and opinions (Jeffrey 2004). Reviews of
the field show that under certain circumstances, experts and nonexperts
can reliably assess subjective probabilities that correspond to objective real-
ity (Wallsten and Budescu 1983). Subjective probability can be measured
along two different concepts: (1) intensity of feelings and (2) hypotheti-
cal frequency. Subjective probability based on intensity of feelings can be
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Subjective
Probability as
a Probability
Function

measured by asking the experts to rate their certainty on a scale of 0 per-
cent to 100 percent. Subjective probability based on hypothetical frequency
can be measured by asking the expert to estimate how many times the tar-
get event will occur out of 100 possible situations.

Suppose an analyst wants to measure the probability that an employee
will join the HMO. Using the first method, an analyst would ask an expert
on the local healthcare market about the intensity of his feelings:

Analyst: Do you think employees will join the plan? On a scale
from 0 to 100, with 100 being certain, how strongly do
you feel you are right?

When measuring according to hypothetical frequencies, the expert
would be asked to imagine what she expects the frequency would be, even
though the event has not occurred repeatedly:

Analyst: Out of 100 employees, how. many do you think will join
the plan?

If both the subjective and the objective methods produce a probability for
the event, then the calculus of probabilities can be used to make new infer-
ences from these data. It makes no difference whether the frequency is
objectively observed through historical precedents or subjectively described
by an expert; the resulting number should follow the rules of probability,

Even though subjective probabilities measured as intensity of feel-
ings are not actually probability functions, they should be treated as such.
Returning to the formal definition of a probability measure, a probability
function is defined by the following characteristics:

1. The probability of an event is a positive number between 0 and 1.

2. One event certainly will happen, so the sum of the probabilities of all
events is 1.

3. The probability of any two mutually exclusive events occurring equals
the sum of the probability of each occurring.

These assumptions are at the root of all mathematical work in prob-
ability, so any beliefs expressed as probability must follow them. Furthermore,
if these three assumptions are met, then the numbers produced in this fash-
ion will follow all rules of probabilities. Are these three assumptions met
when the data are subjective? The first assumption is always true, because
you can assign numbers to beliefs so they are always positive.

But the second and third assumptions are not always true, and peo-
ple do hold beliefs that violate them. However, analysts can take steps to
ensure that these two assumptions are also met. For example, when the
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estimates of all possibilities (¢.g., probability of success and failure) do not
total 1, the analyst can revise the estimates to do so. When the estimated
probabilities of two mutually exclusive events do not equal the sum of their
separate probabilities, the analyst can ask whether they should and adjust
them as necessary.

Decision makers, left to their own devices, may not follow the cal-
culus of probability. Experts’ opinions also may not follow the rules of
probability, but if experts agree with the aforementioned three principles,
then such opinions should follow the rules of probability.

Probabilities and beliefs are not identical constructs; rather, prob-
abilities provide a context in which beliefs can be studied. That is, if
belicfs are expressed as probabilities, then the rules of probability pro-
vide a systematic and orderly method of examining the implications of
these beliefs.

Bayes’s Theorem

From the definition of conditional probability, one can derive the Bayes’s
theovem, an optimal model for revising existing opinion (sometimes called
prior opinion) in light of new evidence or clues. The theorem states

P(H|C, . .., C») P(C, ..., CyH) P(H)
= X —
P(NICL, . .., Cy) P(C, . .., CiN) P(N)

where

o P () designates the probability of the event within the parentheses;

e H marks a target event or hypothesis occurring;

e N designates the same event not occurring;

e C,...,C,mark the clues 1 through #»;

e P(H|C, ..., Cy) is the probability of hypothesis H occurring given
clues 1 through #;

e P(N|C, ..., C,) is the probability of hypothesis H not occurring
given clues 1 through #»;

e P(Ci, ..., GjH) is the prevalence of the clues among the situations
where hypothesis H has occurred and is referred to as the likelihood
of the various clues given H has occurred; and

s P(Ci, ..., CyN)is the prevalence of the clues among situation
where hypothesis H has not occurred. This term is also referred to as
the likelihood of the various clues given H has not occurred.
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In other words, Bayes’s theorem states that

Posterior odds after review of clues =
Likelihood ratio associated with the clues x Prior odds.

The difference between the left and right terms is the knowledge of
clues. Thus, the theorem shows how opinions should change after exam-
ining clues 1 through #. Because Bayes’s theorem prescribes how opinions
should be revised to reflect new data, it is a tool for consistent and sys-
tematic processing of opinions.

Bayes’s theorem claims that prior odds of an event are multiplied by
the likelihood ratio associated with various clues to obtain the posterior
odds for the event. At first glance, it might scem strange to multiply rather
than add. You might question why other probabilities besides prior odds
and likelihood ratios are not included. The following section makes the
logical case for Bayes’s theorem.

Rationale for Bayes’s Theorem

Bayes’s theorem sets a norm for decision makers regarding how they should
revise their opinions. But who says this norm is reasonable? In this section,
Bayes’s theorem is shown to be logical and based on simple assumptions
that most people agree with. Therefore, to remain logically consistent,
everyone should accept Bayes’s theorem as a norm.

Bayes’s theorem was first proven mathematically by Thomas Bayes,
an English mathematician, although he never submitted his paper for pub-
lication. Using Bayes’s notes, Price presented a proof of Bayes’s theorem
(Bayes 1963). The following presentation of Bayes’s argument differs from
the original and is based on the work of de Finetti (1937). Suppose you
want to predict the probability of joining an HMO based on whether the
individual is frail elderly. You could establish four groups:

A group of size a joins the HMO and is frail elderly.

A group of size & joins the HMO and is not frail elderly.

A group of size ¢ does not join the HMO and is frail elderly.

A group of size 4 does not join the HMO and is not frail elderly.

e

Suppose the HMO is offered to 4 + & + ¢ + 4 Medicare beneficiar-
ies (see Table 3.2). The probability of an event is defined as the number
of ways the event occurs divided by the total possibilities. Thus, since the
total number of beneficiaries is 2 + & + ¢ + 4, the probability of any of them
joining the HMO is the number of people who join divided by the total
number of beneficiaries:

a+ b

P(Joining) = ———8 ——
(Joining) a+b+c+d
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TABLE 3.2
Frail Elderly Not Frail Elderly Total Partitioning
Groups
Joins the HMO a b a+b Among Frail
Does not join the HMO ¢ d c+d Elderly Who
Total a+c b+d a+b+c+d Wil Join the
HMO

Similarly, the chance of finding a frail elderly, P (Frail elderly), is
the total number of frail elderly, @ + ¢, divided by the total number of
beneficiaries:

a+c
P(Frail elderly) = ———— .
a+b+c+d

Now consider a special situation in which one focuses only on those
beneficiaries who are frail elderly. Given that the focus is on this subset,
the total number of possibilitics is now reduced from the total number of
beneficiaries to the number who are frail elderly (i.c., a + ¢). If you focus
only on the frail elderly, the probability of one of these beneficiaries join-
ing is

P(Joining| Frail elderly) =

a+c

Similarly, the likelihood that you will find frail elderly among join-
ers is given by reducing the total possibilities to only those beneficiaries
who join the HMO and then by counting how many were frail elderly:

a

P(Frail eldcrly| Joining) =
a+tc

From the above four formulas, you can see that
P(Joining)
(Frail elderly)

P(Joining] Frail elderly) = P(Frail elderly|Joining) x =

Repeating the procedure for not joining the HMO, you find that

P(Not joining)

P(Not joining| Frail elderly) = P(Frail elderly| Not joining) x e
P(Frail elderly)

Dividing the above two equations results in the odds form of the
Bayes’s theorem:

P(Joining| Frail elderly) P(Joining| Frail elderly) P(Joining)

= X .
P(Not joining| Frail elderly)  P(Frail elderly| Not joining) P(Not joining)
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As the above has shown, the Bayes’s theorem follows from very rea-
sonable, simple assumptions. If beneficiaries are partitioned into the four
groups, the numbers in each group are counted, and the probability of an
event is defined as the count of the event divided by number of possibili-
ties, then Bayes’s theorem follows. Most readers will agree that these assump-
tions are reasonable and therefore that the implication of these assumptions
(i.e., the Bayes’s theorem) should also be reasonable.

Independence

In probabilitics, the concept of independence has a very specific meaning.
If two events are independent of each other, then the occurrence of one
event does not reveal much about the occurrence of the other event.
Mathematically, this condition can be presented as

P(A|B) = P(A).

This formula says that the probability of 4 occurring does not change
given that B has occurred.

Independence means that the presence of one clue does not change
the impact of another clue. An example might be the prevalence of dia-
betes and car accidents; knowing the probability of car accidents in a pop-
ulation will not reveal anything about the probability of diabetes.

When two events are independent, you can calculate the probability of
both occurring from the marginal probabilities of each event occurring:

P(Aand B) = P(A) x P(B).

Thus, you can calculate the probability of a person with diabetes
having a car accident as the product of the probability of having diabetes
and the probability of having a car accident.

Conditional Independence

A related concept is conditional independence. Conditional independence
means that, for a specific population, the presence of one clue does not
change the probability of another. Mathematically, this is shown as

P(AlB, C) = P(AlC).

The above formula reads that if you know that C has occurred, telling
you that B has occurred does not add any new information to the estimate
of probability of A. Another way of saying this is to say that in population
C, knowing B does not reveal much about the chance for A. Conditional
independence also allows you to calculate joint probabilities from marginal
probabilities:
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P(A and BIC) = P(AIC) x P(BlC).

The above formula states that among the population C, the proba-
bility of both A and B occurring together is equal to the product of prob-
ability of each event occurring.

It is possible for two events to be dependent, but they may become
independent of cach other when conditioned on the occurrence of a third
event. For example, you may think that scheduling long shifts will lead to
medication errors. This can be shown as follows (# means “not equal to”):

P(Medication error) # P(Medication error| Long shift).

At the same time, you may consider that in the population of employ-
ees that are not fatigued (even though they have long shifts), the two events
are independent of each other:

P(Medication error| Long shift, Not fatigued) =
P(Medication error | Not fatigued).

In English, this formula says that if the nurse is not fatigued, then
it does not matter if the shift is long or short; the probability of medica-
tion error does not change. This example shows that related events may
become independent under certain conditions.

Use of Independence

Independence and conditional independence are often invoked to simplify
the calculation of complex likelihoods involving multiple events. It has
already been shown how independence facilitates the calculation of joint
probabilities. The advantage of verifying independence becomes even more
pronounced when examining more than two events. Recall that the use of
the odds form of Bayes’s theorem requires the estimation of the likelihood
ratio. When multiple events are considered before revising the prior odds,
the estimation of the likelihood ratio involves conditioning future events
on all prior events (Eisenstein and Alemi 1994):

P(C, G, Gyl Canl) = P(Ci|H) X P(C2|H1, Cy) x P(C3|H1, C, &)
x P(Csl F, C1, G, C3) X ... x P(Cul H1, C1, G2, Csy . . ., Cot).

Note that each term in the above formula is conditioned on the
hypothesis, or on previous events. When events are considered, the poste-
rior odds are modified and are used to condition all subsequent events.
The first term is conditioned on no additional event; the second term is
conditioned on the first event; the third term is conditioned on the first
and second events, and so on until the last term that is conditioned on all
subsequent # — 1 events. Keeping in mind that conditioning is reducing
the sample size to the portion of the sample that has the condition, the
above formula suggests a sequence for reducing the sample size. Because
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there are many events, the data has to be portioned in increasingly smaller
sizes. In order for data to be partitioned so many times, a large database
is needed.

Conditional independence allows you to calculate likelihood ratios
associated with a series of events without the need for large databases.
Instead of conditioning the event on the hypothesis and all prior events,
you can now ignore all prior events:

P(C, CyGCs, ..., ColH)=
P(CI|H)x P(GIH)x P(ClH) x P(CslH)x .. . x P(C,|H).

Conditional independence simplifies the calculation of the likelihood
ratios. Now the odds form of Bayes’s theorem can be rewritten in terms
of the likelihood ratio associated with each event:

P(HIC,...,C)) P(CIH) y P(C| H) . P(C,| H) y P(H)
P(NlC,...,c) PNy palny T PN vy

In other words, the above formula states

Posterior odds = Likelihood ratio of first clue x Likelihood ratio of
second clue X . . . x Likelihood ratio of #th clue x Prior odds.

The odds form of Bayes’s theorem has many applications. It is often
used to estimate how various clues (events) may help revise prior proba- ‘
bility of a target event. For example, you might use the above formula to
predict the posterior odds of hospitalization for a frail elderly female patient
if you accept that age and gender are conditionally independent of each
other. Suppose the likelihood ratio associated with being frail elderly is 5/2,
meaning that knowing the patient is frail elderly will increase the odds of
hospitalization by 2.5 times. Also suppose that knowing the patient is female
reduces the odds for hospitalization by ?/10. Now, if the prior odds for
hospitalization is ! /2, the posterior odds for hospitalization can be calcu-
lated using the following formula:

Posterior odds of hospitalization = Likelihood ratio associated with
being frail elderly x Likelihood ratio associated with being female
X Prior odds of hospitalization.

The posterior odds of hospitalization can now be calculated as

2

x L =1.125.
10 "2

Posterior odds of hospitalization =% X
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For mutually exclusive and exhaustive events, the odds for an event can
be restated as the probability of the event by using the following formula:

Odds
1+ Odds

Using the above formula, you can calculate the probability of hos-
pitalization:
1.125

P(Hospitalization) = ————— = 0.53.
1 +1.125

Verifying Conditional Independence

There are several ways to verify conditional independence. These include
(1) reducing sample size, (2) analyzing correlations, (3) asking experts,
and (4) separating in causal maps.

If data exist, conditional independence can be verified by selecting the pop-  Reducing
ulation that has the condition and verifying that the product of marginal ~Sample Size
probabilities is equal to the joint probability of the two events. For exam-
ple, Table 3.3 presents 18 cases from a special unit prone to medication
errors. The question is whether rate of medication errors is independent
of length of work shift.
Using the data in Table 3.3, the probability of medication error is
calculated as follows:

Number of cases with errors 6
P(Error) = - =— =0.33,
Number of cases 18
Number of cases seen by a
provider in a long shift 5
P(Long shift) = =— =0.28,
Number of cases 18

Number of cases with errors
and long shift 2
=

P(Error and Long shift) = = =0.11,
Number of cases 8

P(Error and Long shift) =0.11 #.09 =0.33 x 0.28 =
P(Error) x P(Long shift).



E Decision Analysis for Healthcare Managers

TABLE 3.3
Medication
Errors in 18
Consecutive
Cases

Case Medication Error Long Shift Fatigue
1 No Yes Yes
2 No Yes Yes
3 No No Yes
4 No No Yes
5 Yes Yes Yes
6 Yes No Yes
7 Yes No Yes
8 Yes Yes Yes
9 No No No
10 No No No
11 No Yes No
12 No No No
13 No No No
14 No No No
15 No No No
16 No No No
17 Yes No No
18 Yes No No

The previous calculations show that the probability of medication
error and length of shift are not independent of each other. Knowing the
length of the shift tells you something about the probability of error in that
shift. However, consider the situation in which you are examining these two
events among cases where the provider was fatigued. Now the population
of cases you are examining is reduced to the cases 1 through 8. With this
population, calculation of the probabilities yields the following:

P(Error| Fatigued) = 0.50,
P(Long shift| Fatigued) = 0.50,
P(Error and Long shift| Fatigued) = 0.25,

P(Error and Long shift| Fatigued) = 0.25 = 0.50 x 0.50 =
P(Error| Fatigued) x P(Long shiftlFatigucd).

Among fatigued providers, medication error is independent of length
of work shift. The procedures used in this example, namely calculating the
joint probability and examining it to see if it is approximately equal to the
product of the marginal probability, is one way of verifying independence.

Independence can also be examined by calculating conditional prob-
abilities through restricting the population size. For example, in the
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population of fatigued providers (i.e., in cases 1 through 8) there are sev-
eral cases of working long shifts (i.e., cases 1, 2, 5, and 8). You can use this
information to calculate conditional probabilities as follows:

P(Error| Fatigue) = 0.50,
2
P(Error| Fatigue and Long shift) ZT =0.50.

This again shows that, among fatigued workers, knowing that the
work shift was long adds no information to the probability of medication
error. The above procedure shows how independence can be verified by
counting cases in reduced populations. If there is a considerable amount
of data are available inside a database, the approach can easily be imple-
mented by running a query that would select the condition and count the
number of events of interest.

Another way to verify independence is to examine the correlations among ~ Analyzing
the events (Streiner 2005). Two events that are correlated are dependent.  Correlations
For example, Table 3.4 examines the relationship between age and blood
pressure by calculating the correlation between these two variables.
The correlation between age and blood pressure in the sample of
data in Table 3.4 is 0.91. This correlation is relatively high and suggests
that knowing something about the age of a person will tell you a great deal
about the blood pressure. Therefore, age and blood pressure are depend-
ent in this sample.
Partial correlations can also be used to verify conditional independ-
ence (Scheines 2002). If two events are conditionally independent from
each other, then the partial correlation between the two events given the
condition should be zero; this is called a vanishing partial corvelation.
Partial correlation between 4 and & given ¢ can be calculated from pairwise
correlations:

1. Ry is the correlation between # and 4.
2. R, is the correlation between events # and .
3. R, is the correlation between event ¢ and 4.

Events z and & are conditionally independent of each other if the
vanishing partial correlation condition holds. This condition states

Rab = Ruc X R

Using the data in Table 3.4, you can calculate the following
correlations:
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TABLE 3.4
Relationship
Between Age
and Blood
Pressure in
Seven Patients

Asking
Experts

Case Age Blood Pressure Weight
1 35 140 200
2 30 130 185
3 19 120 180
4 20 111 175
5 17 105 170
6 16 103 165
7 20 102 155

Rage, blood pressure = 0.91 5
Rage, weight = 082,
R\veight, blood pressure = 0.95.

Examination of the data shows that the vanishing partial correlation
holds (= means approximate equality):

Ragc, blood pressure = 091=0.82x0.95= Rage, weight X R\vcight, blood pressure-

Therefore, you can conclude that, given a patient’s weight, the vari-
ables of age and blood pressure are independent of each other because they
have a partial correlation of zero.

It is not always possible to gather data. Sometimes, independence must be
verified subjectively by asking a knowledgeable expert about the relation-
ship among the variables. Independence can be verified by asking the expert
to tell if knowledge of one event will tell you a lot about the likelihood of
another. Conditional independence can be verified by repeating the same
task, but within specific populations. Gustafson and his colleagues (1973)
described a procedure for assessing independence by directly querying experts
as follows (see also Ludke, Stauss, and Gustafson 1977, Jeffrey 2004):

1. Write each event on a 3” x 5” card.

2. Ask each expert to assume a specific population in which the target
event has occurred.

3. Ask the expert to pair the cards if knowing the value of one clue will
alter the affect of another clue in predicting the target event.

4. Repeat these steps for other populations.

5. If several experts are involved, ask them to present their clustering of
cards to each other.

6. Have experts discuss any areas of disagreement, and remind them
that only major dependencies should be clustered.
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7. Use majority rule to choose the final clusters. (To be accepted, a
cluster must be approved by the majority of experts.)

Experts will have in mind different, sometimes wrong, notions of
dependence, so the words “conditional dependence” should be avoided.
Instead, focus on whether one clue tells you a lot about the influence of
another cluc in specific populations. Experts are more likely to understand
this line of questioning as opposed to directly asking them to verify con-
ditional independence.

Strictly speaking, when an expert says that knowledge of one clue
does not change the impact of another, we could interpret this to mean

P(Ci|H, &) P(Ci|H)

P(Ci|Not H,Not C2)  P(Ci|Not H)

It says that the likelihood ratio of clue #1 does not depend on the
occurrence of clue #2. This is a stronger condition that conditional inde-
pendence because it requires conditional independence both in the popu-
lation where event H has occurred and in the population where it has not.
Experts can make these judgments easily, even though they may not be
aware of the probabilistic implications.

One can assess dependencies through analyzing maps of causal relation-  Separate in
ships (Pearl 2000; Greenland, Pearl, and Robins 1999). In a causal net- Causal Maps
work, each node describes an event. The directed arcs between the nodes

depict how one event causes another. Causal networks work for situations

where there is no cyclical relationship among the variables; it is not possi-

ble to start from a node and follow the arcs and return to the same node.

An expert is asked to draw a causal network of the events. If the expert can

do so, then conditional dependence can be verified by the position of the

nodes and the arcs. Several rules can be used to identify conditional depend-

encies in a causal network, including the following (Pearl 1988):

1. Any two nodes connected by an arrow are dependent. Cause and
immediate consequence are dependent.

2. Multiple causes of same effect are dependent, as knowing the effect
and one of the causes will indicate more about the probability of
other causes.

3. If a cause always leads to an intermediary event that subsequently
affects a consequence, then the consequence is independent of the
cause given the intermediary event.

4. If one cause leads to multiple consequences, then the consequences
are conditionally independent of each other given the cause.
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FIGURE 3.5
Causal Map
for Age,
Weight, and
Blood Pressure

. =
pressure

In the above rules, it is assumed that removing the condition will
actually remove the path between the independent events. For example,
think of event A leading to event B and then to event C. Imagine that the
relationships are shown by a directed arrow from nodes A to Band B to
C. If removal of node C renders nodes A4 and B disconnected from each
other, then A and Bare proclaimed independent from each other given C.
Another way to say this is to observe that event Cis always between events
A and B, and there is no way of following the arcs from A to B without
passing through C. In this situation, A is independent of B given C:

P(AlB, C) = P(Al C).

For example, an expert may provide the map in Figure 3.5 for the
relationships among age, weight, and blood pressure.

In Figure 3.5, age and weight are shown to depend on each other.
Age and blood pressure are show to be conditionally independent of each
other, because there is no way of going from one to the other without pass-
ing through the weight node. Note that if there were an arc between age
and blood pressure (i.e., if the expert believed there was a direct relation-
ship between these two variables), then conditional independence would
be violated. Analysis of causal maps can help identify a large number of
independencies among the events being considered. More details and exam-
ples for using causal models to verify independence will be presented in
Chapter 4.

Summary

One way of measuring uncertainty is through the use of the concept of
probability. This chapter defines what probability is and how its calculus
can be used to keep track of the probability of multiple events co-occur-
ring, the probability of one or the other event occurring, and the proba-
bility of an event that is conditioned on the occurrence of other events.
Probability is often thought of as an objective, mathematical process; how-
ever, it can also be applied to the subjective opinions and convictions of
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experts regarding the likelihood of events. Bayes’s theorem is introduced

as a means of revising subjective probabilities or existing opinions based
upon new evidence. The concept of conditional probability is described in
terms of reducing the sample space. Conditional independence makes the
calculation of Bayes’s thorem easier. The chapter provides different meth-
ods for testing for conditional independence, including graphical methods,
correlation methods, and sample reduction methods.

Review What You Know

1. What is the daily probability of an event that has occurred once in
the last year?

2. What is the daily probability of an event that last occurred 3 months
ago?

3. What assumption did you make in answering question 2?

4. Using Table 3.5, what is the probability of hospitalization given that
you are male?

5. Using Table 3.5, is insurance independent of age?

6. Using Table 3.5, what is the likelihood associated with being older
than 65 years among hospitalized patients?

7. Using Table 3.5, in predicting hospitalization, what is the likelihood
ratio associated with being 65 years old?

8. What are the prior odds for hospitalization before any other informa-
tion is available?

9. Analyze the data in the Table 3.5 and report if any two variables are
conditionally independent of each other in predicting probability of
hospitalization? To accomplish this you need to calculate the likeli-
hood ratio associated with the following clues:

"a. Male
b. > 65 years old

TABLE 3.5
Case Hospitalized Gender Age Insured Sample Cases
1 Yes Male > 65 Yes
2 Yes Male < 65 Yes
3 Yes Female > 65 Yes
4 Yes Female < 65 No
5 No Male > 65 No
6 No Male < 65 No
7 No Female > 65 No
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Insured

Male and > 65 years old
Male and insured

> 65 years old and insured

™o oo

Then you can see if adding a piece of information changes the likeli-
hood ratio. Keep in mind that because the number of cases are too
few, many ratios cannot be calculated.

10. Draw what causes medication errors on a piece of paper, with each
cause in a separate node and arrows showing the direction of causal-
ity. List all causes and their immediate effects until the effects lead
to a medication error. Repeat this until all paths to medication
errors are listed. It would be helpful if you number the paths.

11. Analyze the graph you have produced and list all conditional
dependencies inherent in the graph.

Audio/Visual Chapter Aids

To help you understand the concepts of measuring uncertainty, visit this
book’s companion web site at ache.org/DecisionAnalysis, go to Chapter
3, and view the audio/visual chapter aids.

References

Bayes, T. 1963. “Essays Toward Solving a Problem in the Doctrine of
Changes.” Philosophical Translation of Royal Society 53:370-418.

Eisenstein, E. L., and F. Alemi. 1994, “An Evaluation of Factors Influencing
Bayesian Learning Systems.” Journal of the American Medical Informatics
Association 1 (3): 272-84.

de Finetti, B. 1937. “Foresight: Its Logical Laws, Its Subjective Sources.”
Translated by H. E: Kyburg, Jr. In Studies in Subjective Probability,
edited by H. E. Kyburg, Jr. and H. E. Smokler, pp. 93-158. New York:
Wiley, 1964.

Jeffrey, R. 2004. Subjective Probability: The Real Thing. Cambridge, England:
Cambridge University Press.

Grecﬁland, S., J. Pearl, and J. M. Robins. 1999. “Causal Diagrams for
Epidemiologic Research.” Epidemiology 10 (1): 37-48,



Chapter 3: Measuring Uncertainty m

Gustafson, D. H., J. J. Kestly, R. L. Ludke, and F. Larson. 1973. “Probabilistic
Information Processing: Implementation and Evaluation of a Semi-PIP

Diagnostic System.” Computers and Biomedical Research 6 (4): 355-70.
Ludke, R, L., F. F. Stauss, and D. H. Gustafson. 1977. “Comparison of Five
Methods for Estimating Subjective Probability Distributions.”
Organizational Behavior and Human Performance 19 (1): 162-79,
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco: Morgan Kaufmann.
. 2000, Causality: Models, Reasoning, and Inference. Cambridge,

England: Cambridge University Press.

Savage, L. 1954, The Foundation of Statistics. New York: John Wiley and Sons.

Scheines, R. 2002, “Computation and Causation.” Meta Philosophy 33 (1 and
2): 158-80.

Streiner, D. L. 2005. “Finding Our Way: An Introduction to Path Analysis.”
Canadian Journal of Psychiatry 50 (2): 115-22.

Wallsten, T. S., and D. V. Budescu. 1983. “Encoding Subjective Probabilities: A
Psychological and Psychometric Review.” Management Science 29 (2)
151-73.






