ROOT-CAUSE ANALYSIS

Farrokh Alemi, Jeec Vang, and Kathryn Laskey

Root-cause and failure-mode analyses are commonly performed in hospi-
tals to understand factors that contribute to errors and mistakes. Despite
the effort that healthcare professionals put into creating these analyses, few
models of root causes are validated or used to predict future occurrences
of adverse events. This chapter shows how the assumptions and conclusions
of a root-cause analysis can be verified against observed data. This chapter
builds on Chapter 3 and Chapter 4.

Root-cause analysis, according to the Joint Commission on
Accreditation of Healthcare Organizations (JCAHO) (2005) is a “process
for identifying the basic or causal factors that underlie variation in per-
formance, including the occurrence or possible occurrence of a sentinel
event.” Semtinel events include medication errors, patient suicide, proce-
dure complications, wrong-site surgery, treatment delay, restraint death,
assault or rape, transfusion death, and infant abduction. Direct causes bring
about the sentinel event without any other intervening event, and most
direct causes are physically proximate to the sentinel event. However, the
direct causes are themselves caused by root causes. Because of accredita-
tion requirements and renewed interest in patient safety, many hospitals
and clinics are actively conducting root-cause analyses.

When a sentinel event occurs, most employees are focused on the
direct causes that have led to the event. For example, many will claim that
the cause of medication error is a failure to check the label against the
patient’s armband. But this is just the direct cause: To get to the real rea-
son, one should ask why the clinician did not check the label against the
armband. The purpose of a root-cause analysis is to go beyond the direct
and somewhat apparent causes to figure out the underlying reasons for the
event (i.c., the root causes). The objective is to force one to think harder
about the source of the problem. It is possible that the label was not checked
against the armband because the label was missing. Furthermore, it is also
possible that the label was missing because the computer was not printing
the labels. Then, the direct cause is the failure to check the label against the
armband and the root cause is computer malfunction. Exhorting employees
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to check the armband against the label is a waste of time if there is no label
to check in the first place. A focus on direct causes may prevent a sentinel
event for a while, but sooner or later the root cause will lead to a sentinel
event. Inattention to root causes promotes palliative solutions that do not
work in the long run. The value of root-cause analyses lies in identifying
the true, underlying causes. An investigation that does not do this at best
is a waste of time and resources and at worst can exacerbate the problems
it was intended to fix. But how can one know if the speculations about the
root causes of an event are correct?

One way to check the accuracy of a root-cause analysis is to exam-
ine the time to the next sentinel event. Unfortunately, because sentinel
events are rare, one has to wait a long time to see them occut again, even
if no changes were made. An alternative needs to be found to check the
accuracy and consistency of a root-cause analysis without having to wait
for the next sentinel incident.

Many who conduct root-cause analyses become overconfident about
the accuracy of their own insights. No matter how poorly an analysis is car-
ried out, because there is no easy way of proving a person wrong, people
persist in their own fallacies. Some people are even incredulous about the
possibility that their imagined causal influences could be wrong. They insist
on the correctness of their insights because those insights seem obvious.
However, a complex problem that has led to a sentinel event and that has
been left unaddressed by hundreds of smart people for years is unlikely to
have an obvious solution. After all, if the solution was so obvious, why was
it not adopted earlier? The search for obvious solutions contradicts the elu-
siveness of correcting for sentinel events. If a sound and reliable method
existed for checking the accuracy and consistency of a root-cause analysis,
then employees might correct their misperceptions and not be so over-
confident.

Simple methods for checking the accuracy of root-cause analyses
have not been available to date (Boxwala et al. 2004). This chapter sug-
gests a method for doing so. As before, clinicians propose a set of causes.
But now several additional steps are taken. First, probabilities are used to
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quantify the relationship between causes and effects. Then, the laws of
probability and causal diagrams are examined to see if the suggested causes
are consistent with the clinician’s other beliefs and with existing objective
data. Through a cycle of testing model assumptions and conclusions against
observed data, one improves the accuracy of the analysis and gains new
insights into the causes of the sentinel event.

Bayesian Networks

Bayesian causal networks can be used to validate root-cause analyses. A
Bayesian causal network is a mathematical model of causes and effects. It
consists of a set of nodes, typically pictured as ovals, connected by directed
arcs. Each node represents a mutually exclusive and collectively exhaustive
set of possible events..For example, Figure 7.1 shows a Bayesian network
with two nodes. The node labeled “armband legible?” has three possible
values, of which exactly one must occur and two cannot coincide. These
values are “no armband,” “poor legibility,” and “good legibility.” The other
node, labeled “armband checked?” has two possible values: “sure” and
“not sure.” A node with two possible values is called a binary node. Binary
nodes are common in root-cause analyses.

A Bayesian network is a cyclical directed graph, meaning that you
cannot start from a node and follow the arcs to arrive back to where you
started. In a Bayesian network, the relationships among any three nodes
can be described as having one of the following three structures: serial,
diverging, or converging. Each of these graph structures can be verified
through tests of conditional independence and are further explained through
the examples below.

The relationship between the armband being legible and its being
checked in Figure 7.1 is a direct causal relationship. Bayesian networks can
also represent indirect causal relationships through the concept of condi-
tional independence, as shown in Figure 7.2. Figure 7.2 illustrates a sevia/
graph structure, in which the sentinel event is independent of the root
cause given the known value for the direct cause. In this example, the root
cause labeled “understaffing” is an indirect cause of the sentinel event;
there is no direct arc from this root cause to the sentinel event. This means
that the action of the root cause on the sentinel event is indirect, operat-
ing through an intermediate cause. The direct cause of a medication error
is a fatigued nurse. The root cause, understaffing, is conditionally inde-
pendent of the sentinel event given the intermediate cause. This means that
if you intervene in any given instance to relieve a fatigued nurse, you can
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FIGURE 7.1

A Bayesian
Causal Model
with a Local
Probability
Table

FIGURE 7.2
Serial Example
of Direct and
Root Causes
of Medication
Error

( Armband legible? )——»( Armbandchecked?)

Armband checked?

Armband legible Done Not done
No armband 0% 100%
Poor legibility 80% 20%
Good legibility 99% 1%
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Understaffing )}—={ Fatigued nurse —;-C Medication error)

break the link from the root cause to the sentinel event, thus reducing the
probability of the sentinel event to its nominal level. However, this solu-
tion is a palliative one and will not produce a long-term solution unless the
root cause is addressed.

Another type of conditional independence occurs when a cause
gives rise independently to two different effects, as depicted in Figure
7.3. This type of graph structure is known as diverging. In this example,
high blood pressure and diabetes are conditionally independent given the
value of weight gain, but they are correlated because of the influence of
the common cause. That is, the two effects typically either occur together
(when the common cause is present) or are both absent (when the com-
mon cause is absent). This type of conditional independence relationship
is quite useful for diagnosing the presence of root causes that can lead
to multiple independent effects that each influence different sentinel
events. For example, understaffing might lead to several different inter-
mediate causes, ecach of which could be a precursor of different sentinel
events. If several of these precursor events were to be observed, one could
infer that the understaffing problem was sufficiently severe to affect patient
care. Proactive remediation could then be initiated before serious adverse
medical outcomes occur.
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Figures 7.2 and 7.3 illustrate serial and diverging causal structures,
respectively. As you have seen, a serial structure represents the action of an
indirect causal relationship, and a diverging structure represents multiple
independent effects of a single cause. In both of these cases, the two ter-
minal nodes are conditionally independent of each other given the middle
node. A different kind of causal structure, converging, is shown in Figure
7.4. A converging structure occurs when two different causes can produce
a single effect, as when either a fatigued nurse or a missing armband can
cause a medication error. Notice that in this case, the terminal nodes are
not conditionally independent given the middle node. For example, if the
sentinel event is known to occur, and you learn that the armband was pres-
ent, this will increase the probability that the nurse was unacceptably fatigued.
Likewise, if you find that the armband was missing, this will reduce the
likelihood that the problem was caused by fatigue.

Data can be used, if available, to validate the graph structure of a
Bayesian causal network. As noted above, when a connection is serial or
diverging, the terminal nodes are conditionally independent given the inter-
mediate node. In general, a node in a Bayesian network is conditionally
independent of all its nondescendents given its parents. This general con-
dition implies a set of correlations that should be equal to zero if the causal
assumptions correct. Although it is tedious to verify all of these relation-
ships by hand, it is straightforward to automate the verification process,
and computer programs have been written to accomplish the task.

Given a causal graph, one can read off the assumed conditional inde-
pendencies. Conditional independencies are identified by examining serial

FIGURE 7.3
Conditional
Independence
Is Assumed in
a Diverging
Structure

FIGURE 7.4
Two Causes
Converging
into a

Common
Effect
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or diverging graphs in causal models so that removing the condition would
sever the directional flow from the cause to the effect. Often, a compli-
cated root-cause analysis can be broken into smaller components contain-
ing serial and diverging structures. If these structures are observed, and if
removing the condition in these structures would sever the link between
the other two nodes, then a conditional dependency has been identified.
Careful examination of conditionally independent relationships is an impor-
tant element of specifying and validating a Bayesian network for root-cause
analyses.

Validation of Conditional Independence

Once conditional independencies have been identified, the assumptions can
be verified by examining data or by querying experts. If data are available,
the correlations in a serial structure between the root cause and the sentinel
event should equal the correlation between the root cause and the direct
cause times the correlation between the direct cause and the sentinel event:

Rroor cause, sentinel event = Rroot cause, direct cause X Rdircct cause, sentinel event,

where

®  Rioot cause, sentinel event 18 the correlation between the root cause and
the sentinel event,

®  Rioor cause, direct cause 1S the correlation between the root cause and the
direct cause, and

®  Rirect cause, sentinel event 1S the correlation between the direct cause and
the sentinel event.

In a diverging structure, a similar relationship should hold. In par-
ticular, correlation between the two effects should be equal to the multi-
plication of the correlation between the cause and each effect:

Rcffecrl, effece2 = Rcailsc, effectl X Rcause, effect2,

where

®  Reffectl, effect2 18 the correlation between the two effects,

®  Recause, effect1 18 the correlation between the cause and the first effect,
and

*  Reause, effecr2 18 the correlation between the cause and the second effect.

If data are not available, the analyst can ask the investigative team
to verify assumptions of conditional independence based on their intu-
itions. For example, in the serial structure in Figure 7.2, if you know that
the nurse was fatigued, would information about staffing add much to
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your estimate of the probability of medication error? If the answer is no,
then the assumption of conditional independence has been verified. Another
way to ask the same questions is, does understaffing affect medication errors
only by creating a fatigued nurse? In this method, the exclusivity of the
mechanism of change is checked. Still another way of verifying conditional
independence is by asking for estimates of various probabilities:

Question: What do you think is the probability of medication
error when the nurse is fatigued?

Answer: It is higher than when the nurse is not fatigued but still
relatively low.

Question: What do you think is the probability of medication
error when the nurse is fatigued and working in an
understaffed unit.

Answer: Well, I think understaffing leads to a fatigued nurse, but
you are not asking about that, are you?

Question: No, I want to know about the probability of medication
error in these circumstances.

Answer: I would say it is similar to the probability of medication
error among fatigued nurses.

If conditional independence is violated, then the serial or diverging
structures in the graph are incorrect. If these conditions are met, then the
causal graph is correct.

Let’s look at slightly more complicated sets of causes. Figure 7.5
shows four proposed causes for medication error: understaffing, fatigued
nurse, vague communications, and similar medication bottles. Two root
causes (understaffing and vague communications) are shown to precede
the direct cause of a fatigued nurse. Removing the node labeled “fatigued
nurse” would stop the flow from these two root causes to the medication

Fatigued Medication
nurse error

FIGURE 7.5
Four Possiblc
Causes of
Medication
Error and
Their
Relationships

( Understaffing )—*—

Vague Similar medication
communications bottles
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error. Therefore, a conditional independence is assumed. This assumption
can be verified either through data or through experts’ judgments. Assume
that if you know that the nurse is fatigued, understaffing adds no addi-
tional information to the probability of medication error; therefore, this
independence is verified. But suppose that even when the nurse is not
fatigued, vague communications may lead to medication errors. Therefore,
the assumption of the conditional independence of vague communications
and medication error is not met.

Because the assumptions of the model are not correct, the causal
network needs to be modified. Further exploration may indicate that vague
communications, similar medication bottles, and a fatigued nurse directly
affect medication errors. This example shows how verifying conditional
independence could help revise root-cause analyses.

Predictions from Root Causes

The causal model behind root-cause analyses can be used to predict the
probability of a sentinel event, and this probability can then be compared
to the intuitions of the investigative team. The probability of the sentinel
event can be calculated from each of the direct causes, and the probability
of direct causes can be calculated from their root causes:

P(Sentinel | event| Various causes) = P(Sentinel event| Direct causes)
x P(Direct causes| Root causes) X P(Root causes).

To calculate the probability of sentinel event S given a set of differ-
ent unobserved (Cy) and observed causes (C;), you can use the following
formula:

P(S| C1, G, . Cy) = ZP(S| C1,G,.,C) + P(Cup) + P(Cuy) + ... + P(Cuy).
Cy

The above formula requires careful tracking of numerous probabil-
ities, Because these calculations are tedious, investigative teams can use
widely available software, such as Netica, to simplify the calculations. An
example can demonstrate how such calculations are made using this soft-
ware. Suppose Figure 7.6 shows root causes for wrong-site surgery in a
hospital. First, note that the root causes listed are poor physician training
and understaffing as it contributes to a fatigued nurse. These are the root
causes because they are independent of the sentinel event given the vari-
ous direct causes. The direct causes listed are the nurse marking the patient
wrong, the surgeon not following the markings, and the patient providing
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FIGURE 7.6
( Understaffing) Root Causes

/ for Wrong-Site
( Poorsurgeon training ) ( Fatigued nurse )

Surgery
Patient gave wrong Wrong
information marking

Wrong-site surgery)

Marking not
followed

wrong information. These are direct causes because an arc connects them
to the sentinel event.

Given the root-cause analysis in Figure 7.5, the next step is to esti-
mate the probability of the various causes and effects. These probabilities
are obtained by asking the expert to assess the conditional probabilities
implied in the graph (Ludke, Stauss, and Gustafson 1977; Spizzichino
2001). Each node is conditioned on its direct causes. For example, to esti-
mate the probability of having a fatigued nurse, the investigators need to
ask the expert the following two questions:

1. In 100 occasions in which a unit is understaffed, what is the fre-
quency of finding a fatigued nurse?

2. In 100 occasions in which a unit is not understaffed, what is the fre-
quency of finding a fatigued nurse?

Obviously, estimates of probabilities from experts are subjective and
therefore may be unreliable. But if experts are provided with tools (e.g.,
calculators, paper, pencils), brief training in the concept of conditional
probabilities, and available objective data (e.g., JCAHO?’s reports on preva-
lence of various causes), and if experts are allowed to discuss their differ-
ent estimates, then experts’ estimates are usually accurate and reliable.
These probabilities may not be accurate to the last digit, but can provide
for a test of consistency. Suppose that through interviewing experts or
through analyzing hospital data, the investigative team has estimated the
following probabilities:

P(Understaffing) = .40
P(Patient provided wrong information) = .05
P(Poor surgeon training) = .12
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TABLE 7.1
Estimated
Probabilities
of Wrong-Site
Surgery Given
Various
Conditions

P(Fatigued nurse| Understaffing) = .30
P(Fatigued nurse| No understaffing) = .05
P(Nurse marked patient incorrectly|Fatigued nurse) = .17
P(Nurse marked patient incorrectly|Not fatigued nurse) = 0.01
P(Surgeon did not follow markings|Poor training) = 0.10
P(Surgeon did not follow markings|Good training) = 0.01
P(Wrong-site surgery| Patient gave wrong information,
Nurse marked patient incorrectly and Surgeon did not follow markings)
as given as in Table 7.1

Using these estimates, you can use Netica software to calculate the
probability of wrong-site surgeries when no information about any causes
is present as 0.06 (see Figure 7.7 to sce these calculations with Netica
software). Does this seem reasonable to the investigative team? If the
probability is significantly higher than what the investigative team expected,
then perhaps important constraints that prevent wrong-site surgeries have
been missed. If it is too low, then an important cause or mechanism by
which wrong-site surgeries occur might have been missed. If the proba-
bility is in the ballpark but not exactly what was expected, then perhaps
the estimated probabilities might be wrong. In any case, when there is
no correspondence between the probability of the sentinel event and the
investigative team’s intuition, it is time to rethink the analysis and its
parameters.

Other probabilities can also be calculated and compared to the
experts’ intuitions. Suppose on a particular unit on a particular day, you
find the nurse was fatigued but the clinician was well-trained and the patient
provided accurate information. Given the above estimates and the root
cause in Figure 7.6, the probability of wrong-site surgery on this day is

o Probability of
Conditions Wrong-Site
Patient Provided Surgeon Did Not Nurse Marked Surgery Given

Wrong Information  Follow Markings  Patient Incorrectly  Conditions

True True True 0.75
True True False 0.75
True False True 0.70
True False False 0.60
False True True 0.75
False True False 0.70
False False True 0.30

False False False 0.01
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FIGURE 7.7
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calculated as 0.03 using Netica (see Figure 7.8). If this corresponds to the
investigative team’s expectation, then the analysis is consistent and one can
proceed. If not, one needs to examine why not and look for adjustments
that would fit the model predictions to experienced rates.

Reverse Predictions

The Bayesian network can also be used to calculate the probability of
observing a cause given that an effect has occurred. This is the reverse
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FIGURE 7.9
Root Causes
of Sentinel

Events,
1995-2004

of how most people think about causes and effects. Most people start
with a cause and want to predict the probability of the effect. Bayesian
probability models allow you to do the reverse. One can start with known
sentinel events and ask about the prevalence of a particular cause among
them. Because causes are not as rare as sentinel events, this procedure
allows one to check on the adequacy of the analysis without having to
wait a long time for the reoccurrence of the sentinel event. To make
things easier, JCAHO publishes the prevalence of categories of causes
among sentinel events (see http: //www.jcipatientsafety.org). Despite lim-
itations (Boxwala et al. 2004 ), these data can be used to examine the con-
sistency of a root-cause analysis done in one organization against the
industry patterns roughly reported through JCAHO’s voluntary system.
A large discrepancy between observed prevalence of causes among sen-
tinel events and assumed prevalence of causes in the investigative team’s
model suggest errors in assignments of probabilities as well as possible
missed causes or constraints.

Netica software can calculate the prevalence of understaffing in the
model of wrong-site surgeries. First, the probability of wrong-site surgery is
set to 100%. The software then reports the prevalence of understaffing,.

The software calculated that understaffing was present in 44 percent
of wrong-site surgeries (see Figure 7.9). But is this a reasonable estimate?
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SOURCE: Joint Commission on Accreditation of Healthcare Organizations. 2005, “Sentincl Event
Statistics.” [Online information; retrieved 6/16/05]. hitp: //www.jcaho.org/accredited+ organizations/
ambulatory+care /sentinel+events /root+causes+of+sentinel +event.htm.
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In contrast, JCAHO reports staffing levels to be a cause of sentinel event
in fewer than 20 percent of surgeries (see Figure 7.10). Obviously, there
are many reasons for a healthcare organization to differ from other aggre-
gate data reported by JCAHO. But JCAHO’s data can be used as a rough
benchmark. Because the two probabilities differ considerably, these differ-
ences suggest the need to rethink the analysis.

Overview of Proposed Method for Root-Cause
Analyses

Sentinel events can be redueed if healthcare organization create a blame-
free environment, conduct a root-cause analysis, and take concrete actions
in response to the analysis. Conduct a verifiable root-cause analysis by com-
pleting the following steps:

1. Before a sentinel event occurs, an investigative team is organized.
The team should include a facilitator and a team leader. The facilita-
tot’s responsibility is to organize tasks, serve as staff to the team, and
conduct team meetings in an efficient and effective method (see
Chapter 6) for details). The facilitator should be trained in probabil-
ity models. The leader’s responsibility is to make sure that the inves-
tigation is carried out thoroughly and to provide content expertise.

2. When a sentinel event is reported, the employees closest to the inci-
dent are asked to record facts (not accusations) about the event,
including what happened, who was present, where the event

FIGURE 7.10
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occurred, when it occurred, and what the time sequence of the
events that preceded the sentinel event was.

The investigative team meets and brainstorms the following: (1)
potential causes for the incidence and (2) key constraints that would
have prevented the incidence if they had been in place. Two steps are
taken to make sure the listing is comprehensive. First, the framing
bias is reduced by using alternative prompts. Because constraints can
be thought of as reverse causes, the team should be asked to list both
the constraints and causes. Furthermore, because the team is focused
on conditions that led to the sentinel event, they should also be
asked to examine conditions that prevented sentinel events on other
occasions.

The facilitator interviews the investigative team or uses existing data
to assign a probability to each cause and a conditional probability for
each effect following the cause.

The facilitator checks the accuracy of the causal model and asks the
investigative team to revise their model. The following steps allows
one to check the accuracy or consistency of the causal model;

a. The facilitator uses the model to predict the probability of the
sentinel event. If this probability is several magnitudes higher
than historical patterns or investigative team’s intuitions, the
facilitator seeks additional constraints that would reduce the
probability of the sentinel event. If the probability is lower than
historical experience or the investigative team’s intuitions, the
team is asked to describe additional mechanisms and causes that
may lead to the sentinel event.

b. The facilitator uses the model to calculate the prevalence of the
causes among sentinel events. These data are checked against
the investigative team’s intuitions as well as against observed
industry rates published by JCAHO.

c. The facilitator checks that claimed root causes are conditionally
independent from the sentinel event. If a root cause is directly
linked to the sentinel event, the investigative team is asked to
redefine the direct cause to be specific to the mechanism used
by the root cause to affect the sentinel event. If few root causes
have been specified, the investigative team is asked to rethink
the reasons why the direct causes occur,

d. The facilitator checks the marginal probabilities against
objective data. If the probabilities do not match, the
facilitator should use the objective probabilities whenever
available.

6. The findings are documented. A flowchart shows the nodes for the

root causes, direct causes, and sentinel events connecting to each



Chapter 7: Root-Cause Analysis

other with arrows. Arrows are drawn from root causes to direct
causes and from direct causes to sentinel events.

Summary

Investigative teams often rely on their own intuitions for listing the root
causes of a sentinel event. They rarely check the validity of their analysis.
Bayesian networks can be applied to root-cause analyses to test the valid-
ity or consistency of the analyses. Real analysis should be a careful exami-
nation of facts and not a cover for wishful speculation. By creating a Bayesian
network and estimating the probabilities of various events, one can scru-
tinize assumptions made in a root-cause analysis. In particular, one can
check if important root causes have been missed, if the analysis is focused
on root causes or direct causes, if the frequency of the sentinel event cor-
responds to expectations and experienced rates, if the prevalence of the
causes of sentinel events corresponds to known rates, and if the assump-
tions of dependence or independence are wrong. These are not exact ways
of checking the accuracy of the analysis, but these methods allow one to
check the intuition of investigative teams and help them think through the
implication of their analysis.

Review What You Know

1. When A causes B, B causes C, and there are no other causal relation-
ships, what implication do these relationships have for the condi-
tional probabilities?

2. What are the steps in conducting a root-cause analysis?

3. How can you validate the root-cause analysis? List specific ways that
assumptions in root-cause analysis can be verified.

4. If a root-cause analysis of wrong-site surgery exceeds by several folds
the observed frequency of wrong-site surgery, what implication does
this have for the analysis?

5. What are serial, diverging, and converging structures, and which ones
imply conditional independence?

6. What is meant by reverse prediction, and why is that more useful
than directly predicting a rare accident?

7. In the root-cause analysis of wrong-site surgery, what is the probabil-
ity of finding that the patient was responsible? If in the past you have
reviewed 100 wrong-site surgeries and found that 5 percent of them
were because of patient misinformation, what is the implication of
this finding for the root-causc analysis?

183
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Rapid-Analysis Exercises

10.

11.

Interview a colleague at work to analyze root causes of an adverse
outcome (not necessarily a sentinel event). Make sure that you list at
least three direct causes or constraints and that you include the cate-
gories suggested by JCAHO. Draw a flowchart.

Indicate the direct and root causes of the sentinel event in your
model.

Give an example question that can check the conditional independ-
ence assumption associated with root causes. Make sure the question
is not awkward.

Verify all assumptions of conditional independence in your model by
interacting with your expert. Show what assumptions were checked
and what assumptions were violated.

Estimate marginal and conditional probabilities by interviewing your
expert.

Use Netica to estimate the probability of the sentinel event.

Use Netica to calculate the probability of sentinel event in at least
three different scenarios (i.e., combination of causes occurring or
not occurring).

Ask your expert if the various estimates in questions 6 through 7 are
within your expert’s expectations.

Calculate the prevalence of root causes for the sentinel event in your
analysis. Compare these data to JCAHO?’s reports on prevalence of
causes of sentinel events. Report the difference between your model
assumptions and JCAHO?’s data.

Suggest how you would change the causal model to better accom-
modate your expert’s'insights. Show how your root-cause analysis
changed as a consequence of the data you examined.

Bring your work to class.

Audio/Visual Chapter Aids

To help you understand the concepts of root-cause analysis, visit this book’s
companion web site at ache.org/DecisionAnalysis, go to Chapter 7, and
view the audio/visual chapter aids.



Chapter 7: Root-Cause Analysis @

References

Boxwala, A. A., M. Dierks, M. Keenan, S. Jackson, R. Hanscom, D. W. Bates,
and L. Sato. 2004, “Organization and Representation of Patient Safety
Data: Current Status and Issues Around Generalizability and Scalability.”
Journal of the Amevican Medical Informatics Association 11 (6): 468-78.

Joint Commission on Accreditation of Healthcare Organizations (JCAHO).

2005. “Glossary of Terms.” [Online information; retrieved 06,/16,/05.]
http://www.jcaho.org/accredited+organizations/sentinel+event /
glossary.htm.

Ludke, R. L., F. E. Stauss, and D. H. Gustafson. 1977. “Comparison of Five
Methods for Estimating Subjective Probability Distributions.
Organizational Behavior and Human Performance 19 (1): 162-79.

Spizzichino, F. 2001. Subjective Probability Models for Lifetimes. Boca Raton, FL
Chapman and Hall.






