
Question 3 

Following Peugh (2010), the following steps were performed in this multilevel modeling (MLM) analysis. 

 

Step 1: Research question 

Since we are interested in estimating the effect of two patient level predictors (MI: Myocardial 

Infarction, and CHF: Congestive Heart Failure) on a patient level outcome (LOS: length of stay) for two 

independent groups of patients (Clinician, Peer provider) i.e. patients nested within groups, multilevel 

modeling is justified. Although it is possible to add group dummy as a predictor variable in order to 

examine the mean difference in LOS between the two groups, observations nested within each group 

will not be independent of each other thus violating one of the key assumptions of OLS regression. 

 

Step 2: Choice of parameter estimation method 

Due to the very small sample size (Level-1, n = 44, Level-2, n =2) in this problem, the restricted maximum 

likelihood (REML) method was chosen for parameter estimation. In small samples the alternative 

estimation method i.e. full information maximum likelihood (FIML) method tends to produce biased 

variance estimates. 

 

Step 3: Assessment of need for multilevel modeling 

Even though the research question suggests that in theory multilevel modeling is justified in this 

problem, we need to assess the need for such modeling from a practical point of view. In order to 

determine whether or not multilevel modeling is worthwhile I estimated the intra-class correlation, ICC 

coefficient and the design effect, Deff. Following Raudenbush and Bryk (2002), ICC was calculated by 

estimating an unconditional hierarchical linear model (HLM) using Level-1 and Level-2 equations shown 

in (1). 
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The output from HLM model (1) is shown in Figure 3.1. 

 



 

Figure 3.1 

 

 

Based on this unconditional (or random effects ANOVA) model, the variance in LOS at Level-1 was found 

to be 52.02   and variance in LOS at Level-2 was found to be 59.000  . These two numbers were 

used to calculate ICC as follows: 
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This suggests that approximately one half (53%) of the variation in LOS is due to differences between 

groups (Clinician vs Peer provider). This high ICC value (ICC > 0.05 [Peugh, 2010]) supports the need for 

multilevel modeling. Further support for multilevel modeling came from calculation of the design effect 

(Deff > 2.0 [Peugh, 2010]). 
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Step 4: Building Level-1 model 

In order to control for the effect of MI and CHF, these patient level predictors were added to HLM model 

shown earlier in (1). The enhanced model is shown in (2). 
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The model shown in (2) is known as Level-1 fixed effects model because Level-1 partial slope coefficients 

are not treated as random variables. It should be noted that the predictors in model (2) were added 

after group mean centering as recommended by Peugh (2010). Such centering applies regardless of the 

predictors' scale of measurement. Also, note that MI and CHF are dummy variables that take a value of 1 

when respective condition is present in a patient and a value of 0 if the condition is not present. The 

variance component estimates from model (2) are presented in Figure 3.2. These estimates suggest that 

inclusion of Level-1 predictors reduced the within-groups variation from the earlier estimate of 0.52 to 

0.04. In other words, inclusion of MI and CHF as Level-1 predictors in the HLM model helped explained 

 
%3.92100

52.0

04.052.0



of the within-groups variation. This percentage is conceptually 

comparable to the R2 statistic from OLS regression predicting LOS from MI and CHF. 

 

 

 

Figure 3.2 

 

 

The Level-1 fixed effects model presented in (2) is based on the assumption that the effect of Level-1 

predictors on LOS does not vary across the Clinician and Peer provider groups. Relaxing this assumption 

results in a relatively more complex version of the HLM model which is typically referred to as Level-1 

random effects model. This random effects model is presented in (3). 
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Model (3) differs from model (2) as it treats all Level-1 partial slope coefficients as random variables. 

Although model (3) is more sophisticated than model (2), computational errors were encountered in its 

estimation. Peugh (2010) describes various reasons why a computer program may fail to estimate the 

Level-1 random effects model, and also suggests some strategies to resolve such computational issues. 

These strategies include (a) raising the number of iterations used in parameter estimation, (b) artificially 

increasing the variance in dependent variables and at the same time decreasing the variance in 

independent variables, and (c) simplifying the model by decreasing the number of random effects to be 

estimated. The first two strategies did not work for the data in this problem. In order to apply the third 

strategy I estimated two subsets of model (3). These subsets are presented in (4) and (5). Neither of 

these subsets turned out to be computationally feasible. For this reason I decided to revert back to the 

Level-1 fixed effects model (model [2]). 
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The parameter estimates from model (2) are presented in Figure 3.3 and suggest that 85.400  , p > 

.05; 29.110  , p < .001; and 90.020  , p < .001. These results suggest that when patients are nested 

within provider groups (1) the partial effect of MI on LOS is significant, (2) the partial effect of CHF on 

LOS is significant, and (3) after controlling for MI and CHF the average LOS for all groups is 4.85 days 

(this number has a large standard error due to an unusually small number of Level-2 observations [n = 2 

groups] as a result of which the p value is larger than 0.05). 

 



 

Figure 3.3 

 

 

The descriptive statistics for predicted LOS by group are presented in Figure 3.4. These statistics suggest 

that the Clinician group has a longer LOS (M = 5.40 days) compared to the Peer provider group (M = 4.29 

days). The average of these means is 4.85 which was earlier reported as 85.400   in Figure 3.3. 

 

 

 

Figure 3.4 

 

 

For comparison, OLS multiple regression results predicting LOS from MI, CHF, and group membership (1 

= Clinician, 0 = Peer provider) are presented in Figure 3.5. These results suggest that the LOS for Clinician 

group exceeds that of Peer provider group by 0.74 days. The comparable difference in LOS between 

these groups from the HLM model was 5.40 – 4.29 = 1.11 days. 

 

Step 5: Building Level-2 model 

Building a Level-2 model involves adding group level predictors that can help explain the between-

groups variation in LOS. Since no such predictors are provided in the source data this step can be 

skipped. 

 

 



 

Figure 3.5 

 

Step 6: Effect size reporting 

Estimates of within-groups variation and between-groups variation were presented earlier in Figures 3.1 

and 3.2, and can be used to estimate the total amount of explained variance. Since there were no Level-

2 predictors in our HLM model, 0% of the between-groups variation in LOS was explained by the model. 

Level-1 predictors MI and CHF taken together explained 92.3% of the within-groups variation in LOS. 

Thus, of the total variation in LOS the HLM model as a whole explained approximately 43.4%. 
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If we add all of the unexplained between-groups variation (ICC = 53%) to this estimate of 43%, then the 

total figure of 96% is conceptually comparable to the R2 value of 95.1% reported in the OLS regression 

output in figure 3.5 (note that OLS regression treats between-groups variation as explained variation). 

 

Step 7: Likelihood model ratio testing 

Model fit statistics from the unconditional and final HLM models are presented in Figure 3.6. The 

parameter estimates for the two models are presented in Figure 3.7. Following Peugh 92010), the 

deviance (reported as -2 Log Likelihood or –2LL) and total number of parameters from these results can 

be used to calculate the observed 2 value of 99.8 as shown below. 
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Since the observed 2  value of 99.8 is larger than the corresponding critical value of 5.99 at .05 level of 

significance, we can conclude that the HLM model that includes MI and CHF as predictors fits the data 

significantly better than the unconditional model that did not include any predictors. 

 

 

 

a. Results from model (1) 

 

b. Results from model (2) 

Figure 3.6 



 

a. Results from model (1) 

 

b. Results from model (2) 

Figure 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


