
Chapter 8

Multiple and logistic regression

The principles of simple linear regression lay the foundation for more sophisticated re-
gression methods used in a wide range of challenging settings. In Chapter 8, we explore
multiple regression, which introduces the possibility of more than one predictor, and logistic
regression, a technique for predicting categorical outcomes with two possible categories.

8.1 Introduction to multiple regression

Multiple regression extends simple two-variable regression to the case that still has one re-
sponse but many predictors (denoted x1, x2, x3, ...). The method is motivated by scenarios
where many variables may be simultaneously connected to an output.

We will consider Ebay auctions of a video game called Mario Kart for the Nintendo
Wii. The outcome variable of interest is the total price of an auction, which is the highest
bid plus the shipping cost. We will try to determine how total price is related to each char-
acteristic in an auction while simultaneously controlling for other variables. For instance,
all other characteristics held constant, are longer auctions associated with higher or lower
prices? And, on average, how much more do buyers tend to pay for additional Wii wheels
(plastic steering wheels that attach to the Wii controller) in auctions? Multiple regression
will help us answer these and other questions.

The data set mario kart includes results from 141 auctions.1 Four observations from
this data set are shown in Table 8.1, and descriptions for each variable are shown in Ta-
ble 8.2. Notice that the condition and stock photo variables are indicator variables. For
instance, the cond new variable takes value 1 if the game up for auction is new and 0 if it is
used. Using indicator variables in place of category names allows for these variables to be
directly used in regression. See Section 7.2.7 for additional details. Multiple regression also
allows for categorical variables with many levels, though we do not have any such variables
in this analysis, and we save these details for a second or third course.

1Diez DM, Barr CD, Çetinkaya-Rundel M. 2015. openintro: OpenIntro data sets and supplement
functions. github.com/OpenIntroOrg/openintro-r-package.

372



8.1. INTRODUCTION TO MULTIPLE REGRESSION 373

price cond new stock photo duration wheels
1 51.55 1 1 3 1
2 37.04 0 1 7 1
...

...
...

...
...

...
140 38.76 0 0 7 0
141 54.51 1 1 1 2

Table 8.1: Four observations from the mario kart data set.

variable description

price final auction price plus shipping costs, in US dollars
cond new a coded two-level categorical variable, which takes value 1 when the

game is new and 0 if the game is used
stock photo a coded two-level categorical variable, which takes value 1 if the

primary photo used in the auction was a stock photo and 0 if the
photo was unique to that auction

duration the length of the auction, in days, taking values from 1 to 10
wheels the number of Wii wheels included with the auction (a Wii wheel

is a plastic racing wheel that holds the Wii controller and is an
optional but helpful accessory for playing Mario Kart)

Table 8.2: Variables and their descriptions for the mario kart data set.

8.1.1 A single-variable model for the Mario Kart data

Let’s fit a linear regression model with the game’s condition as a predictor of auction price.
The model may be written as

p̂rice = 42.87 + 10.90× cond new

Results of this model are shown in Table 8.3 and a scatterplot for price versus game con-
dition is shown in Figure 8.4.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.8711 0.8140 52.67 0.0000
cond new 10.8996 1.2583 8.66 0.0000

df = 139

Table 8.3: Summary of a linear model for predicting auction price based
on game condition.

⊙
Guided Practice 8.1 Examine Figure 8.4. Does the linear model seem reason-
able?2

2Yes. Constant variability, nearly normal residuals, and linearity all appear reasonable.
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Figure 8.4: Scatterplot of the total auction price against the game’s condi-
tion. The least squares line is also shown.

 Example 8.2 Interpret the coefficient for the game’s condition in the model. Is this
coefficient significantly different from 0?

Note that cond new is a two-level categorical variable that takes value 1 when the
game is new and value 0 when the game is used. So 10.90 means that the model
predicts an extra $10.90 for those games that are new versus those that are used.
(See Section 7.2.7 for a review of the interpretation for two-level categorical predictor
variables.) Examining the regression output in Table 8.3, we can see that the p-
value for cond new is very close to zero, indicating there is strong evidence that the
coefficient is different from zero when using this simple one-variable model.

8.1.2 Including and assessing many variables in a model

Sometimes there are underlying structures or relationships between predictor variables.
For instance, new games sold on Ebay tend to come with more Wii wheels, which may
have led to higher prices for those auctions. We would like to fit a model that includes all
potentially important variables simultaneously. This would help us evaluate the relationship
between a predictor variable and the outcome while controlling for the potential influence
of other variables. This is the strategy used in multiple regression. While we remain
cautious about making any causal interpretations using multiple regression, such models
are a common first step in providing evidence of a causal connection.
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We want to construct a model that accounts for not only the game condition, as in Sec-
tion 8.1.1, but simultaneously accounts for three other variables: stock photo, duration,
and wheels.

̂price = β0 + β1 × cond new + β2 × stock photo

+ β3 × duration + β4 × wheels

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 (8.3)

In this equation, y represents the total price, x1 indicates whether the game is new, x2

indicates whether a stock photo was used, x3 is the duration of the auction, and x4 is the
number of Wii wheels included with the game. Just as with the single predictor case, a
multiple regression model may be missing important components or it might not precisely
represent the relationship between the outcome and the available explanatory variables.
While no model is perfect, we wish to explore the possibility that this one may fit the data
reasonably well.

We estimate the parameters β0, β1, ..., β4 in the same way as we did in the case of a
single predictor. We select b0, b1, ..., b4 that minimize the sum of the squared residuals:

SSE = e2
1 + e2

2 + · · ·+ e2
141 =

141∑
i=1

e2
i =

141∑
i=1

(yi − ŷi)2
(8.4)

Here there are 141 residuals, one for each observation. We typically use a computer to
minimize the sum in Equation (8.4) and compute point estimates, as shown in the sample
output in Table 8.5. Using this output, we identify the point estimates bi of each βi, just
as we did in the one-predictor case.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.2110 1.5140 23.92 0.0000
cond new 5.1306 1.0511 4.88 0.0000

stock photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882

wheels 7.2852 0.5547 13.13 0.0000
df = 136

Table 8.5: Output for the regression model where price is the outcome
and cond new, stock photo, duration, and wheels are the predictors.

Multiple regression model

A multiple regression model is a linear model with many predictors. In general,
we write the model as

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

when there are k predictors. We often estimate the βi parameters using a computer.
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⊙
Guided Practice 8.5 Write out the model in Equation (8.3) using the point
estimates from Table 8.5. How many predictors are there in this model?3

⊙
Guided Practice 8.6 What does β4, the coefficient of variable x4 (Wii wheels),
represent? What is the point estimate of β4?4

⊙
Guided Practice 8.7 Compute the residual of the first observation in Table 8.1
on page 373 using the equation identified in Guided Practice 8.5.5

 Example 8.8 We estimated a coefficient for cond new in Section 8.1.1 of b1 = 10.90
with a standard error of SEb1 = 1.26 when using simple linear regression. Why might
there be a difference between that estimate and the one in the multiple regression
setting?

If we examined the data carefully, we would see that some predictors are correlated.
For instance, when we estimated the connection of the outcome price and predictor
cond new using simple linear regression, we were unable to control for other variables
like the number of Wii wheels included in the auction. That model was biased by the
confounding variable wheels. When we use both variables, this particular underlying
and unintentional bias is reduced or eliminated (though bias from other confounding
variables may still remain).

Example 8.8 describes a common issue in multiple regression: correlation among pre-
dictor variables. We say the two predictor variables are collinear (pronounced as co-linear)
when they are correlated, and this collinearity complicates model estimation. While it is
impossible to prevent collinearity from arising in observational data, experiments are usu-
ally designed to prevent predictors from being collinear.⊙

Guided Practice 8.9 The estimated value of the intercept is 36.21, and one might
be tempted to make some interpretation of this coefficient, such as, it is the model’s
predicted price when each of the variables take value zero: the game is used, the
primary image is not a stock photo, the auction duration is zero days, and there are
no wheels included. Is there any value gained by making this interpretation?6

8.1.3 Adjusted R2 as a better estimate of explained variance

We first used R2 in Section 7.2 to determine the amount of variability in the response that
was explained by the model:

R2 = 1− variability in residuals

variability in the outcome
= 1− V ar(ei)

V ar(yi)

where ei represents the residuals of the model and yi the outcomes. This equation remains
valid in the multiple regression framework, but a small enhancement can often be even
more informative.

3ŷ = 36.21 + 5.13x1 + 1.08x2 − 0.03x3 + 7.29x4, and there are k = 4 predictor variables.
4It is the average difference in auction price for each additional Wii wheel included when holding the

other variables constant. The point estimate is b4 = 7.29.
5ei = yi − ŷi = 51.55 − 49.62 = 1.93, where 49.62 was computed using the variables values from the

observation and the equation identified in Guided Practice 8.5.
6Three of the variables (cond new, stock photo, and wheels) do take value 0, but the auction duration

is always one or more days. If the auction is not up for any days, then no one can bid on it! That means
the total auction price would always be zero for such an auction; the interpretation of the intercept in this
setting is not insightful.
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⊙
Guided Practice 8.10 The variance of the residuals for the model given in Guided
Practice 8.7 is 23.34, and the variance of the total price in all the auctions is 83.06.
Calculate R2 for this model.7

This strategy for estimating R2 is acceptable when there is just a single variable.
However, it becomes less helpful when there are many variables. The regular R2 is a less
estimate of the amount of variability explained by the model. To get a better estimate, we
use the adjusted R2.

Adjusted R2 as a tool for model assessment

The adjusted R2 is computed as

R2
adj = 1− V ar(ei)/(n− k − 1)

V ar(yi)/(n− 1)
= 1− V ar(ei)

V ar(yi)
× n− 1

n− k − 1

where n is the number of cases used to fit the model and k is the number of
predictor variables in the model.

Because k is never negative, the adjusted R2 will be smaller – often times just a
little smaller – than the unadjusted R2. The reasoning behind the adjusted R2 lies in the
degrees of freedom associated with each variance.8⊙

Guided Practice 8.11 There were n = 141 auctions in the mario kart data set
and k = 4 predictor variables in the model. Use n, k, and the variances from Guided
Practice 8.10 to calculate R2

adj for the Mario Kart model.9⊙
Guided Practice 8.12 Suppose you added another predictor to the model, but
the variance of the errors V ar(ei) didn’t go down. What would happen to the R2?
What would happen to the adjusted R2? 10

Adjusted R2 could have been used in Chapter 7. However, when there is only k = 1
predictors, adjusted R2 is very close to regular R2, so this nuance isn’t typically important
when considering only one predictor.

7R2 = 1− 23.34
83.06

= 0.719.
8In multiple regression, the degrees of freedom associated with the variance of the estimate of the

residuals is n−k−1, not n−1. For instance, if we were to make predictions for new data using our current
model, we would find that the unadjusted R2 is an overly optimistic estimate of the reduction in variance
in the response, and using the degrees of freedom in the adjusted R2 formula helps correct this bias.

9R2
adj = 1− 23.34

83.06
× 141−1

141−4−1
= 0.711.

10The unadjusted R2 would stay the same and the adjusted R2 would go down.
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8.2 Model selection

The best model is not always the most complicated. Sometimes including variables that
are not evidently important can actually reduce the accuracy of predictions. In this section
we discuss model selection strategies, which will help us eliminate variables from the model
that are found to be less important.

In practice, the model that includes all available explanatory variables is often referred
to as the full model. The full model may not be the best model, and if it isn’t, we want
to identify a smaller model that is preferable.

8.2.1 Identifying variables in the model that may not be helpful

Adjusted R2 describes the strength of a model fit, and it is a useful tool for evaluating
which predictors are adding value to the model, where adding value means they are (likely)
improving the accuracy in predicting future outcomes.

Let’s consider two models, which are shown in Tables 8.6 and 8.7. The first table
summarizes the full model since it includes all predictors, while the second does not include
the duration variable.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.2110 1.5140 23.92 0.0000
cond new 5.1306 1.0511 4.88 0.0000

stock photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882

wheels 7.2852 0.5547 13.13 0.0000

R2
adj = 0.7108 df = 136

Table 8.6: The fit for the full regression model, including the adjusted R2.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0483 0.9745 36.99 0.0000
cond new 5.1763 0.9961 5.20 0.0000

stock photo 1.1177 1.0192 1.10 0.2747
wheels 7.2984 0.5448 13.40 0.0000

R2
adj = 0.7128 df = 137

Table 8.7: The fit for the regression model for predictors cond new,
stock photo, and wheels.

 Example 8.13 Which of the two models is better?

We compare the adjusted R2 of each model to determine which to choose. Since the
first model has an R2

adj smaller than the R2
adj of the second model, we prefer the

second model to the first.

Will the model without duration be better than the model with duration? We cannot
know for sure, but based on the adjusted R2, this is our best assessment.
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8.2.2 Two model selection strategies

Two common strategies for adding or removing variables in a multiple regression model are
called backward elimination and forward selection. These techniques are often referred to
as stepwise model selection strategies, because they add or delete one variable at a time
as they “step” through the candidate predictors.

Backward elimination starts with the model that includes all potential predictor
variables. Variables are eliminated one-at-a-time from the model until we cannot improve
the adjusted R2. The strategy within each elimination step is to eliminate the variable that
leads to the largest improvement in adjusted R2.

 Example 8.14 Results corresponding to the full model for the mario kart data
are shown in Table 8.6. How should we proceed under the backward elimination
strategy?

Our baseline adjusted R2 from the full model is R2
adj = 0.7108, and we need to

determine whether dropping a predictor will improve the adjusted R2. To check, we
fit four models that each drop a different predictor, and we record the adjusted R2

from each:

Exclude ... cond new stock photo duration wheels

R2
adj = 0.6626 R2

adj = 0.7107 R2
adj = 0.7128 R2

adj = 0.3487

The third model without duration has the highest adjusted R2 of 0.7128, so we
compare it to the adjusted R2 for the full model. Because eliminating duration

leads to a model with a higher adjusted R2, we drop duration from the model.

Since we eliminated a predictor from the model in the first step, we see whether
we should eliminate any additional predictors. Our baseline adjusted R2 is now
R2
adj = 0.7128. We now fit three new models, which consider eliminating each of the

three remaining predictors:

Exclude duration and ... cond new stock photo wheels

R2
adj = 0.6587 R2

adj = 0.7124 R2
adj = 0.3414

None of these models lead to an improvement in adjusted R2, so we do not eliminate
any of the remaining predictors. That is, after backward elimination, we are left with
the model that keeps cond new, stock photos, and wheels, which we can summarize
using the coefficients from Table 8.7:

ŷ = b0 + b1x1 + b2x2 + b4x4

p̂rice = 36.05 + 5.18× cond new + 1.12× stock photo + 7.30× wheels
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The forward selection strategy is the reverse of the backward elimination technique.
Instead of eliminating variables one-at-a-time, we add variables one-at-a-time until we
cannot find any variables that improve the model (as measured by adjusted R2).

 Example 8.15 Construct a model for the mario kart data set using the forward
selection strategy.

We start with the model that includes no variables. Then we fit each of the possible
models with just one variable. That is, we fit the model including just cond new,
then the model including just stock photo, then a model with just duration, and a
model with just wheels. Each of the four models provides an adjusted R2 value:

Add ... cond new stock photo duration wheels

R2
adj = 0.3459 R2

adj = 0.0332 R2
adj = 0.1338 R2

adj = 0.6390

In this first step, we compare the adjusted R2 against a baseline model that has
no predictors. The no-predictors model always has R2

adj = 0. The model with one

predictor that has the largest adjusted R2 is the model with the wheels predictor,
and because this adjusted R2 is larger than the adjusted R2 from the model with no
predictors (R2

adj = 0), we will add this variable to our model.

We repeat the process again, this time considering 2-predictor models where one of
the predictors is wheels and with a new baseline of R2

adj = 0.6390:

Add wheels and ... cond new stock photo duration

R2
adj = 0.7124 R2

adj = 0.6587 R2
adj = 0.6528

The best predictor in this stage, cond new, has a higher adjusted R2 (0.7124) than
the baseline (0.6390), so we also add cond new to the model.

Since we have again added a variable to the model, we continue and see whether it
would be beneficial to add a third variable:

Add wheels, cond new, and ... stock photo duration

R2
adj = 0.7128 R2

adj = 0.7107

The model adding stock photo improved adjusted R2 (0.7124 to 0.7128), so we add
stock photo to the model.

Because we have again added a predictor, we check whether adding the last variable,
duration, will improve adjusted R2. We compare the adjusted R2 for the model with
duration and the other three predictors (0.7108) to the model that only considers
wheels, cond new, and stock photo (0.7128). Adding duration does not improve
the adjusted R2, so we do not add it to the model, and we have arrived at the same
model that we identified from backward elimination.

Model selection strategies

Backward elimination begins with the largest model and eliminates variables one-
by-one until we are satisfied that all remaining variables are important to the
model. Forward selection starts with no variables included in the model, then it
adds in variables according to their importance until no other important variables
are found.
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There is no guarantee that backward elimination and forward selection will arrive at
the same final model. If both techniques are tried and they arrive at different models, we
choose the model with the larger R2

adj ; other tie-break options exist but are beyond the
scope of this book.

8.2.3 The p-value approach, an alternative to adjusted R2

The p-value may be used as an alternative to adjusted R2 for model selection.

In backward elimination, we would identify the predictor corresponding to the largest
p-value. If the p-value is above the significance level, usually α = 0.05, then we would drop
that variable, refit the model, and repeat the process. If the largest p-value is less than
α = 0.05, then we would not eliminate any predictors and the current model would be our
best-fitting model.

In forward selection with p-values, we reverse the process. We begin with a model
that has no predictors, then we fit a model for each possible predictor, identifying the
model where the corresponding predictor’s p-value is smallest. If that p-value is smaller
than α = 0.05, we add it to the model and repeat the process, considering whether to add
more variables one-at-a-time. When none of the remaining predictors can be added to the
model and have a p-value less than 0.05, then we stop adding variables and the current
model would be our best-fitting model.

⊙
Guided Practice 8.16 Examine Table 8.7 on page 378, which considers the model
including the cond new, stock photo, and wheels predictors. If we were using the p-
value approach with backward elimination and we were considering this model, which
of these three variables would be up for elimination? Would we drop that variable,
or would we keep it in the model?11

While the adjusted R2 and p-value approaches are similar, they sometimes lead to
different models, with the adjusted R2 approach tending to include more predictors in the
final model. For example, if we had used the p-value approach with the auction data, we
would not have included the stock photo predictor in the final model.

When to use the adjusted R2 and when to use the p-value approach

When the sole goal is to improve prediction accuracy, use adjusted R2. This is
commonly the case in machine learning applications.

When we care about understanding which variables are statistically significant pre-
dictors of the response, or if there is interest in producing a simpler model at the
potential cost of a little prediction accuracy, then the p-value approach is preferred.

Regardless of whether you use adjusted R2 or the p-value approach, or if you use
the backward elimination of forward selection strategy, our job is not done after variable
selection. We must still verify the model conditions are reasonable.

11The stock photo predictor is up for elimination since it has the largest p-value. Additionally, since
that p-value is larger than 0.05, we would in fact eliminate stock photo from the model.
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8.3 Checking model assumptions using graphs

Multiple regression methods using the model

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

generally depend on the following four assumptions:

1. the residuals of the model are nearly normal,

2. the variability of the residuals is nearly constant,

3. the residuals are independent, and

4. each variable is linearly related to the outcome.

Diagnostic plots can be used to check each of these assumptions. We will consider the
model from the Mario Kart auction data, and check whether there are any notable concerns:

p̂rice = 36.05 + 5.18× cond new + 1.12× stock photo + 7.30× wheels

Normal probability plot. A normal probability plot of the residuals is shown in Fig-
ure 8.8. While the plot exhibits some minor irregularities, there are no outliers that
might be cause for concern. In a normal probability plot for residuals, we tend to
be most worried about residuals that appear to be outliers, since these indicate long
tails in the distribution of residuals.
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Figure 8.8: A normal probability plot of the residuals is helpful in identi-
fying observations that might be outliers.

Absolute values of residuals against fitted values. A plot of the absolute value of
the residuals against their corresponding fitted values (ŷi) is shown in Figure 8.9.
This plot is helpful to check the condition that the variance of the residuals is ap-
proximately constant. We don’t see any obvious deviations from constant variance in
this example.
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Figure 8.9: Comparing the absolute value of the residuals against the fitted
values (ŷi) is helpful in identifying deviations from the constant variance
assumption.

Residuals in order of their data collection. A plot of the residuals in the order their
corresponding auctions were observed is shown in Figure 8.10. Such a plot is helpful in
identifying any connection between cases that are close to one another, e.g. we could
look for declining prices over time or if there was a time of the day when auctions
tended to fetch a higher price. Here we see no structure that indicates a problem.12

Residuals against each predictor variable. We consider a plot of the residuals against
the cond new variable, the residuals against the stock photo variable, and the resid-
uals against the wheels variable. These plots are shown in Figure 8.11. For the
two-level condition variable, we are guaranteed not to see any remaining trend, and
instead we are checking that the variability doesn’t fluctuate across groups, which it
does not. However, looking at the stock photo variable, we find that there is some
difference in the variability of the residuals in the two groups. Additionally, when we
consider the residuals against the wheels variable, we see some possible structure.
There appears to be curvature in the residuals, indicating the relationship is probably
not linear.

It is necessary to summarize diagnostics for any model fit. If the diagnostics support
the model assumptions, this would improve credibility in the findings. If the diagnostic
assessment shows remaining underlying structure in the residuals, we should try to adjust
the model to account for that structure. If we are unable to do so, we may still report the
model but must also note its shortcomings. In the case of the auction data, we report that
there appears to be non-constant variance in the stock photo variable and that there may
be a nonlinear relationship between the total price and the number of wheels included for
an auction. This information would be important to buyers and sellers who may review
the analysis, and omitting this information could be a setback to the very people who the
model might assist.

12An especially rigorous check would use time series methods. For instance, we could check whether
consecutive residuals are correlated. Doing so with these residuals yields no statistically significant corre-
lations.
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Figure 8.10: Plotting residuals in the order that their corresponding ob-
servations were collected helps identify connections between successive ob-
servations. If it seems that consecutive observations tend to be close to
each other, this indicates the independence assumption of the observations
would fail.

“All models are wrong, but some are useful” -George E.P. Box

The truth is that no model is perfect. However, even imperfect models can be
useful. Reporting a flawed model can be reasonable so long as we are clear and
report the model’s shortcomings.

Caution: Don’t report results when assumptions are grossly violated

While there is a little leeway in model assumptions, don’t go too far. If model as-
sumptions are very clearly violated, consider a new model, even if it means learning
more statistical methods or hiring someone who can help.

TIP: Confidence intervals in multiple regression

Confidence intervals for coefficients in multiple regression can be computed using
the same formula as in the single predictor model:

bi ± t?dfSEbi

where t?df is the appropriate t-value corresponding to the confidence level and model
degrees of freedom, df = n− k − 1.
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Figure 8.11: For the condition and stock photo variables, we check for
differences in the distribution shape or variability of the residuals. In the
case of the stock photos variable, we see a little less variability in the unique
photo group than the stock photo group. For numerical predictors, we also
check for trends or other structure. We see some slight bowing in the
residuals against the wheels variable in the bottom plot.
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8.4 Introduction to logistic regression

In this section we introduce logistic regression as a tool for building models when there is
a categorical response variable with two levels. Logistic regression is a type of generalized
linear model (GLM) for response variables where regular multiple regression does not
work very well. In particular, the response variable in these settings often takes a form
where residuals look completely different from the normal distribution.

GLMs can be thought of as a two-stage modeling approach. We first model the
response variable using a probability distribution, such as the binomial or Poisson distri-
bution. Second, we model the parameter of the distribution using a collection of predictors
and a special form of multiple regression.

In Section 8.4 we will revisit the email data set from Chapter 1. These emails were
collected from a single email account, and we will work on developing a basic spam filter
using these data. The response variable, spam, has been encoded to take value 0 when a
message is not spam and 1 when it is spam. Our task will be to build an appropriate model
that classifies messages as spam or not spam using email characteristics coded as predictor
variables. While this model will not be the same as those used in large-scale spam filters,
it shares many of the same features.

8.4.1 Email data

The email data set was first presented in Chapter 1 with a relatively small number of
variables. In fact, there are many more variables available that might be useful for classi-
fying spam. Descriptions of these variables are presented in Table 8.12. The spam variable
will be the outcome, and the other 10 variables will be the model predictors. While we
have limited the predictors used in this section to be categorical variables (where many
are represented as indicator variables), numerical predictors may also be used in logistic
regression. See the footnote for an additional discussion on this topic.13

8.4.2 Modeling the probability of an event

TIP: Notation for a logistic regression model

The outcome variable for a GLM is denoted by Yi, where the index i is used to
represent observation i. In the email application, Yi will be used to represent
whether email i is spam (Yi = 1) or not (Yi = 0).

The predictor variables are represented as follows: x1,i is the value of variable 1 for
observation i, x2,i is the value of variable 2 for observation i, and so on.

Logistic regression is a generalized linear model where the outcome is a two-level
categorical variable. The outcome, Yi, takes the value 1 (in our application, this represents
a spam message) with probability pi and the value 0 with probability 1 − pi. It is the
probability pi that we model in relation to the predictor variables.

13Recall from Chapter 7 that if outliers are present in predictor variables, the corresponding observations
may be especially influential on the resulting model. This is the motivation for omitting the numerical
variables, such as the number of characters and line breaks in emails, that we saw in Chapter 1. These
variables exhibited extreme skew. We could resolve this issue by transforming these variables (e.g. using a
log-transformation), but we will omit this further investigation for brevity.
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variable description

spam Specifies whether the message was spam.
to multiple An indicator variable for if more than one person was listed in the To field

of the email.
cc An indicator for if someone was CCed on the email.
attach An indicator for if there was an attachment, such as a document or image.
dollar An indicator for if the word “dollar” or dollar symbol ($) appeared in the

email.
winner An indicator for if the word “winner” appeared in the email message.
inherit An indicator for if the word “inherit” (or a variation, like “inheritance”)

appeared in the email.
password An indicator for if the word “password” was present in the email.
format Indicates if the email contained special formatting, such as bolding, tables,

or links
re subj Indicates whether “Re:” was included at the start of the email subject.
exclaim subj Indicates whether any exclamation point was included in the email subject.

Table 8.12: Descriptions for 11 variables in the email data set. Notice that
all of the variables are indicator variables, which take the value 1 if the
specified characteristic is present and 0 otherwise.

The logistic regression model relates the probability an email is spam (pi) to the
predictors x1,i, x2,i, ..., xk,i through a framework much like that of multiple regression:

transformation(pi) = β0 + β1x1,i + β2x2,i + · · ·βkxk,i (8.17)

We want to choose a transformation in Equation (8.17) that makes practical and mathe-
matical sense. For example, we want a transformation that makes the range of possibilities
on the left hand side of Equation (8.17) equal to the range of possibilities for the right hand
side; if there was no transformation for this equation, the left hand side could only take
values between 0 and 1, but the right hand side could take values outside of this range. A
common transformation for pi is the logit transformation, which may be written as

logit(pi) = loge

(
pi

1− pi

)
The logit transformation is shown in Figure 8.13. Below, we rewrite Equation (8.17) using
the logit transformation of pi:

loge

(
pi

1− pi

)
= β0 + β1x1,i + β2x2,i + · · ·+ βkxk,i

In our spam example, there are 10 predictor variables, so k = 10. This model isn’t very
intuitive, but it still has some resemblance to multiple regression, and we can fit this model
using software. In fact, once we look at results from software, it will start to feel like we’re
back in multiple regression, even if the interpretation of the coefficients is more complex.
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Figure 8.13: Values of pi against values of logit(pi).

 Example 8.18 Here we create a spam filter with a single predictor: to multiple.
This variable indicates whether more than one email address was listed in the To field
of the email. The following logistic regression model was fit using statistical software:

log

(
pi

1− pi

)
= −2.12− 1.81× to multiple

If an email is randomly selected and it has just one address in the To field, what is
the probability it is spam? What if more than one address is listed in the To field?

If there is only one email in the To field, then to multiple takes value 0 and the

right side of the model equation equals -2.12. Solving for pi:
e−2.12

1+e−2.12 = 0.11. Just as
we labeled a fitted value of yi with a “hat” in single-variable and multiple regression,
we will do the same for this probability: p̂i = 0.11.

If there is more than one address listed in the To field, then the right side of the model
equation is −2.12− 1.81× 1 = −3.93, which corresponds to a probability p̂i = 0.02.

Notice that we could examine -2.12 and -3.93 in Figure 8.13 to estimate the probability
before formally calculating the value.

To convert from values on the regression-scale (e.g. -2.12 and -3.93 in Example 8.18),
use the following formula, which is the result of solving for pi in the regression model:

pi =
eβ0+β1x1,i+···+βkxk,i

1 + eβ0+β1x1,i+···+βkxk,i

As with most applied data problems, we substitute the point estimates for the parameters
(the βi) so that we may make use of this formula. In Example 8.18, the probabilities were
calculated as

e−2.12

1 + e−2.12
= 0.11

e−2.12−1.81

1 + e−2.12−1.81
= 0.02
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While the information about whether the email is addressed to multiple people is a help-
ful start in classifying email as spam or not, the probabilities of 11% and 2% are not
dramatically different, and neither provides very strong evidence about which particular
email messages are spam. To get more precise estimates, we’ll need to include many more
variables in the model.

We used statistical software to fit the logistic regression model with all ten predictors
described in Table 8.12. Like multiple regression, the result may be presented in a summary
table, which is shown in Table 8.14. The structure of this table is almost identical to that
of multiple regression; the only notable difference is that the p-values are calculated using
the normal distribution rather than the t-distribution.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8362 0.0962 -8.69 0.0000
to multiple -2.8836 0.3121 -9.24 0.0000

winner 1.7038 0.3254 5.24 0.0000
format -1.5902 0.1239 -12.84 0.0000
re subj -2.9082 0.3708 -7.84 0.0000

exclaim subj 0.1355 0.2268 0.60 0.5503
cc -0.4863 0.3054 -1.59 0.1113

attach 0.9790 0.2170 4.51 0.0000
dollar -0.0582 0.1589 -0.37 0.7144

inherit 0.2093 0.3197 0.65 0.5127
password -1.4929 0.5295 -2.82 0.0048

Table 8.14: Summary table for the full logistic regression model for the
spam filter example.

Just like multiple regression, we could trim some variables from the model using the
p-value. Using backward elimination with a p-value cutoff of 0.05 (start with the full
model and trim the predictors with p-values greater than 0.05), we ultimately eliminate
the exclaim subj, dollar, inherit, and cc predictors. The remainder of this section will
rely on this smaller model, which is summarized in Table 8.15.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8595 0.0910 -9.44 0.0000
to multiple -2.8372 0.3092 -9.18 0.0000

winner 1.7370 0.3218 5.40 0.0000
format -1.5569 0.1207 -12.90 0.0000
re subj -3.0482 0.3630 -8.40 0.0000
attach 0.8643 0.2042 4.23 0.0000

password -1.4871 0.5290 -2.81 0.0049

Table 8.15: Summary table for the logistic regression model for the spam
filter, where variable selection has been performed.
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⊙
Guided Practice 8.19 Examine the summary of the reduced model in Table 8.15,
and in particular, examine the to multiple row. Is the point estimate the same as
we found before, -1.81, or is it different? Explain why this might be.14

Point estimates will generally change a little – and sometimes a lot – depending on
which other variables are included in the model. This is usually due to colinearity in the
predictor variables. We previously saw this in the Ebay auction example when we compared
the coefficient of cond new in a single-variable model and the corresponding coefficient
in the multiple regression model that used three additional variables (see Sections 8.1.1
and 8.1.2).

 Example 8.20 Spam filters are built to be automated, meaning a piece of software
is written to collect information about emails as they arrive, and this information is
put in the form of variables. These variables are then put into an algorithm that
uses a statistical model, like the one we’ve fit, to classify the email. Suppose we
write software for a spam filter using the reduced model shown in Table 8.15. If
an incoming email has the word “winner” in it, will this raise or lower the model’s
calculated probability that the incoming email is spam?

The estimated coefficient of winner is positive (1.7370). A positive coefficient esti-
mate in logistic regression, just like in multiple regression, corresponds to a positive
association between the predictor and response variables when accounting for the
other variables in the model. Since the response variable takes value 1 if an email is
spam and 0 otherwise, the positive coefficient indicates that the presence of “winner”
in an email raises the model probability that the message is spam.

 Example 8.21 Suppose the same email from Example 8.20 was in HTML format,
meaning the format variable took value 1. Does this characteristic increase or de-
crease the probability that the email is spam according to the model?

Since HTML corresponds to a value of 1 in the format variable and the coefficient of
this variable is negative (-1.5569), this would lower the probability estimate returned
from the model.

8.4.3 Practical decisions in the email application

Examples 8.20 and 8.21 highlight a key feature of logistic and multiple regression. In the
spam filter example, some email characteristics will push an email’s classification in the
direction of spam while other characteristics will push it in the opposite direction.

If we were to implement a spam filter using the model we have fit, then each future
email we analyze would fall into one of three categories based on the email’s characteristics:

1. The email characteristics generally indicate the email is not spam, and so the resulting
probability that the email is spam is quite low, say, under 0.05.

2. The characteristics generally indicate the email is spam, and so the resulting proba-
bility that the email is spam is quite large, say, over 0.95.

3. The characteristics roughly balance each other out in terms of evidence for and against
the message being classified as spam. Its probability falls in the remaining range,
meaning the email cannot be adequately classified as spam or not spam.

14The new estimate is different: -2.87. This new value represents the estimated coefficient when we are
also accounting for other variables in the logistic regression model.
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If we were managing an email service, we would have to think about what should be
done in each of these three instances. In an email application, there are usually just two
possibilities: filter the email out from the regular inbox and put it in a “spambox”, or let
the email go to the regular inbox.⊙

Guided Practice 8.22 The first and second scenarios are intuitive. If the evidence
strongly suggests a message is not spam, send it to the inbox. If the evidence strongly
suggests the message is spam, send it to the spambox. How should we handle emails
in the third category?15

⊙
Guided Practice 8.23 Suppose we apply the logistic model we have built as a
spam filter and that 100 messages are placed in the spambox over 3 months. If we
used the guidelines above for putting messages into the spambox, about how many
legitimate (non-spam) messages would you expect to find among the 100 messages?16

Almost any classifier will have some error. In the spam filter guidelines above, we
have decided that it is okay to allow up to 5% of the messages in the spambox to be real
messages. If we wanted to make it a little harder to classify messages as spam, we could
use a cutoff of 0.99. This would have two effects. Because it raises the standard for what
can be classified as spam, it reduces the number of good emails that are classified as spam.
However, it will also fail to correctly classify an increased fraction of spam messages. No
matter the complexity and the confidence we might have in our model, these practical
considerations are absolutely crucial to making a helpful spam filter. Without them, we
could actually do more harm than good by using our statistical model.

8.4.4 Diagnostics for the email classifier

Logistic regression conditions

There are two key conditions for fitting a logistic regression model:

1. Each predictor xi is linearly related to logit(pi) if all other predictors are
held constant.

2. Each outcome Yi is independent of the other outcomes.

The first condition of the logistic regression model is not easily checked without a
fairly sizable amount of data. Luckily, we have 3,921 emails in our data set! Let’s first
visualize these data by plotting the true classification of the emails against the model’s
fitted probabilities, as shown in Figure 8.16. The vast majority of emails (spam or not)
still have fitted probabilities below 0.5.

This may at first seem very discouraging: we have fit a logistic model to create a spam
filter, but no emails have a fitted probability of being spam above 0.75. Don’t despair; we
will discuss ways to improve the model through the use of better variables in Section 8.4.5.

15In this particular application, we should err on the side of sending more mail to the inbox rather than
mistakenly putting good messages in the spambox. So, in summary: emails in the first and last categories
go to the regular inbox, and those in the second scenario go to the spambox.

16First, note that we proposed a cutoff for the predicted probability of 0.95 for spam. In a worst case
scenario, all the messages in the spambox had the minimum probability equal to about 0.95. Thus, we
should expect to find about 5 or fewer legitimate messages among the 100 messages placed in the spambox.
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Figure 8.16: The predicted probability that each of the 3,912 emails is spam
is classified by their grouping, spam or not. Noise (small, random vertical
shifts) have been added to each point so that points with nearly identical
values aren’t plotted exactly on top of one another. This makes it possible
to see more observations.

We’d like to assess the quality of our model. For example, we might ask: if we look
at emails that we modeled as having a 10% chance of being spam, do we find about 10%
of them actually are spam? To help us out, we’ll borrow an advanced statistical method
called natural splines that estimates the local probability over the region 0.00 to 0.75
(the largest predicted probability was 0.73, so we avoid extrapolating). All you need to
know about natural splines to understand what we are doing is that they are used to fit
flexible lines rather than straight lines.

The curve fit using natural splines is shown in Figure 8.17 as a solid black line. If
the logistic model fits well, the curve should closely follow the dashed y = x line. We
have added shading to represent the confidence bound for the curved line to clarify what
fluctuations might plausibly be due to chance. Even with this confidence bound, there
are weaknesses in the first model assumption. The solid curve and its confidence bound
dips below the dashed line from about 0.1 to 0.3, and then it drifts above the dashed line
from about 0.35 to 0.55. These deviations indicate the model relating the parameter to the
predictors does not closely resemble the true relationship.

We could evaluate the second logistic regression model assumption – independence of
the outcomes – using the model residuals. The residuals for a logistic regression model
are calculated the same way as with multiple regression: the observed outcome minus the
expected outcome. For logistic regression, the expected value of the outcome is the fitted
probability for the observation, and the residual may be written as

ei = Yi − p̂i

We could plot these residuals against a variety of variables or in their order of collection,
as we did with the residuals in multiple regression. However, since the model will need to
be revised to effectively classify spam and you have already seen similar residual plots in
Section 8.3, we won’t investigate the residuals here.
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Figure 8.17: The solid black line provides the empirical estimate of the prob-
ability for observations based on their predicted probabilities (confidence
bounds are also shown for this line), which is fit using natural splines. A
small amount of noise was added to the observations in the plot to allow
more observations to be seen.

8.4.5 Improving the set of variables for a spam filter

If we were building a spam filter for an email service that managed many accounts (e.g.
Gmail or Hotmail), we would spend much more time thinking about additional variables
that could be useful in classifying emails as spam or not. We also would use transformations
or other techniques that would help us include strongly skewed numerical variables as
predictors.

Take a few minutes to think about additional variables that might be useful in iden-
tifying spam. Below is a list of variables we think might be useful:

(1) An indicator variable could be used to represent whether there was prior two-way
correspondence with a message’s sender. For instance, if you sent a message to
john@example.com and then John sent you an email, this variable would take value
1 for the email that John sent. If you had never sent John an email, then the variable
would be set to 0.

(2) A second indicator variable could utilize an account’s past spam flagging information.
The variable could take value 1 if the sender of the message has previously sent
messages flagged as spam.

(3) A third indicator variable could flag emails that contain links included in previous
spam messages. If such a link is found, then set the variable to 1 for the email.
Otherwise, set it to 0.

The variables described above take one of two approaches. Variable (1) is specially designed
to capitalize on the fact that spam is rarely sent between individuals that have two-way



394 CHAPTER 8. MULTIPLE AND LOGISTIC REGRESSION

communication. Variables (2) and (3) are specially designed to flag common spammers or
spam messages. While we would have to verify using the data that each of the variables is
effective, these seem like promising ideas.

Table 8.18 shows a contingency table for spam and also for the new variable described
in (1) above. If we look at the 1,090 emails where there was correspondence with the sender
in the preceding 30 days, not one of these message was spam. This suggests variable (1)
would be very effective at accurately classifying some messages as not spam. With this
single variable, we would be able to send about 28% of messages through to the inbox with
confidence that almost none are spam.

prior correspondence
no yes Total

spam 367 0 367
not spam 2464 1090 3554

Total 2831 1090 3921

Table 8.18: A contingency table for spam and a new variable that represents
whether there had been correspondence with the sender in the preceding
30 days.

The variables described in (2) and (3) would provide an excellent foundation for dis-
tinguishing messages coming from known spammers or messages that take a known form
of spam. To utilize these variables, we would need to build databases: one holding email
addresses of known spammers, and one holding URLs found in known spam messages. Our
access to such information is limited, so we cannot implement these two variables in this
textbook. However, if we were hired by an email service to build a spam filter, these would
be important next steps.

In addition to finding more and better predictors, we would need to create a customized
logistic regression model for each email account. This may sound like an intimidating task,
but its complexity is not as daunting as it may at first seem. We’ll save the details for a
statistics course where computer programming plays a more central role.

For what is the extremely challenging task of classifying spam messages, we have made
a lot of progress. We have seen that simple email variables, such as the format, inclusion
of certain words, and other circumstantial characteristics, provide helpful information for
spam classification. Many challenges remain, from better understanding logistic regression
to carrying out the necessary computer programming, but completing such a task is very
nearly within your reach.
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8.5 Exercises

8.5.1 Introduction to multiple regression

8.1 Baby weights, Part I. The Child Health and Development Studies investigate a range of
topics. One study considered all pregnancies between 1960 and 1967 among women in the Kaiser
Foundation Health Plan in the San Francisco East Bay area. Here, we study the relationship
between smoking and weight of the baby. The variable smoke is coded 1 if the mother is a
smoker, and 0 if not. The summary table below shows the results of a linear regression model for
predicting the average birth weight of babies, measured in ounces, based on the smoking status of
the mother.17

Estimate Std. Error t value Pr(>|t|)
(Intercept) 123.05 0.65 189.60 0.0000

smoke -8.94 1.03 -8.65 0.0000

The variability within the smokers and non-smokers are about equal and the distributions are
symmetric. With these conditions satisfied, it is reasonable to apply the model. (Note that we
don’t need to check linearity since the predictor has only two levels.)

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of babies born to
smoker and non-smoker mothers.

(c) Is there a statistically significant relationship between the average birth weight and smoking?

8.2 Baby weights, Part II. Exercise 8.1 introduces a data set on birth weight of babies.
Another variable we consider is parity, which is 0 if the child is the first born, and 1 otherwise.
The summary table below shows the results of a linear regression model for predicting the average
birth weight of babies, measured in ounces, from parity.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 120.07 0.60 199.94 0.0000

parity -1.93 1.19 -1.62 0.1052

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of first borns and
others.

(c) Is there a statistically significant relationship between the average birth weight and parity?

17Child Health and Development Studies, Baby weights data set.
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8.3 Baby weights, Part III. We considered the variables smoke and parity, one at a time, in
modeling birth weights of babies in Exercises 8.1 and 8.2. A more realistic approach to modeling
infant weights is to consider all possibly related variables at once. Other variables of interest
include length of pregnancy in days (gestation), mother’s age in years (age), mother’s height in
inches (height), and mother’s pregnancy weight in pounds (weight). Below are three observations
from this data set.

bwt gestation parity age height weight smoke

1 120 284 0 27 62 100 0
2 113 282 0 33 64 135 0
...

...
...

...
...

...
...

...
1236 117 297 0 38 65 129 0

The summary table below shows the results of a regression model for predicting the average birth
weight of babies based on all of the variables included in the data set.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -80.41 14.35 -5.60 0.0000

gestation 0.44 0.03 15.26 0.0000
parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170
height 1.15 0.21 5.63 0.0000
weight 0.05 0.03 1.99 0.0471
smoke -8.40 0.95 -8.81 0.0000

(a) Write the equation of the regression line that includes all of the variables.

(b) Interpret the slopes of gestation and age in this context.

(c) The coefficient for parity is different than in the linear model shown in Exercise 8.2. Why
might there be a difference?

(d) Calculate the residual for the first observation in the data set.

(e) The variance of the residuals is 249.28, and the variance of the birth weights of all babies
in the data set is 332.57. Calculate the R2 and the adjusted R2. Note that there are 1,236
observations in the data set.
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8.4 Absenteeism, Part I. Researchers interested in the relationship between absenteeism from
school and certain demographic characteristics of children collected data from 146 randomly sam-
pled students in rural New South Wales, Australia, in a particular school year. Below are three
observations from this data set.

eth sex lrn days

1 0 1 1 2
2 0 1 1 11
...

...
...

...
...

146 1 0 0 37

The summary table below shows the results of a linear regression model for predicting the average
number of days absent based on ethnic background (eth: 0 - aboriginal, 1 - not aboriginal), sex
(sex: 0 - female, 1 - male), and learner status (lrn: 0 - average learner, 1 - slow learner).18

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.93 2.57 7.37 0.0000

eth -9.11 2.60 -3.51 0.0000
sex 3.10 2.64 1.18 0.2411
lrn 2.15 2.65 0.81 0.4177

(a) Write the equation of the regression line.

(b) Interpret each one of the slopes in this context.

(c) Calculate the residual for the first observation in the data set: a student who is aboriginal,
male, a slow learner, and missed 2 days of school.

(d) The variance of the residuals is 240.57, and the variance of the number of absent days for all
students in the data set is 264.17. Calculate the R2 and the adjusted R2. Note that there are
146 observations in the data set.

8.5 GPA. A survey of 55 Duke University students asked about their GPA, number of hours
they study at night, number of nights they go out, and their gender. Summary output of the
regression model is shown below. Note that male is coded as 1.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.45 0.35 9.85 0.00
studyweek 0.00 0.00 0.27 0.79
sleepnight 0.01 0.05 0.11 0.91

outnight 0.05 0.05 1.01 0.32
gender -0.08 0.12 -0.68 0.50

(a) Calculate a 95% confidence interval for the coefficient of gender in the model, and interpret it
in the context of the data.

(b) Would you expect a 95% confidence interval for the slope of the remaining variables to include
0? Explain

18W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. Data can also
be found in the R MASS package. New York: Springer, 2002.
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8.6 Cherry trees. Timber yield is approximately equal to the volume of a tree, however, this
value is difficult to measure without first cutting the tree down. Instead, other variables, such as
height and diameter, may be used to predict a tree’s volume and yield. Researchers wanting to
understand the relationship between these variables for black cherry trees collected data from 31
such trees in the Allegheny National Forest, Pennsylvania. Height is measured in feet, diameter
in inches (at 54 inches above ground), and volume in cubic feet.19

Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.99 8.64 -6.71 0.00

height 0.34 0.13 2.61 0.01
diameter 4.71 0.26 17.82 0.00

(a) Calculate a 95% confidence interval for the coefficient of height, and interpret it in the context
of the data.

(b) One tree in this sample is 79 feet tall, has a diameter of 11.3 inches, and is 24.2 cubic feet in
volume. Determine if the model overestimates or underestimates the volume of this tree, and
by how much.

8.5.2 Model selection

8.7 Baby weights, Part IV. Exercise 8.3 considers a model that predicts a newborn’s weight
using several predictors (gestation length, parity, age of mother, height of mother, weight of mother,
smoking status of mother). The table below shows the adjusted R-squared for the full model as
well as adjusted R-squared values for all models we evaluate in the first step of the backwards
elimination process.

Model Adjusted R2

1 Full model 0.2541
2 No gestation 0.1031
3 No parity 0.2492
4 No age 0.2547
5 No height 0.2311
6 No weight 0.2536
7 No smoking status 0.2072

Which, if any, variable should be removed from the model first?

19D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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8.8 Absenteeism, Part II. Exercise 8.4 considers a model that predicts the number of days
absent using three predictors: ethnic background (eth), gender (sex), and learner status (lrn).
The table below shows the adjusted R-squared for the model as well as adjusted R-squared values
for all models we evaluate in the first step of the backwards elimination process.

Model Adjusted R2

1 Full model 0.0701
2 No ethnicity -0.0033
3 No sex 0.0676
4 No learner status 0.0723

Which, if any, variable should be removed from the model first?

8.9 Baby weights, Part V. Exercise 8.3 provides regression output for the full model (including
all explanatory variables available in the data set) for predicting birth weight of babies. In this
exercise we consider a forward-selection algorithm and add variables to the model one-at-a-time.
The table below shows the p-value and adjusted R2 of each model where we include only the
corresponding predictor. Based on this table, which variable should be added to the model first?

variable gestation parity age height weight smoke

p-value 2.2× 10−16 0.1052 0.2375 2.97× 10−12 8.2× 10−8 2.2× 10−16

R2
adj 0.1657 0.0013 0.0003 0.0386 0.0229 0.0569

8.10 Absenteeism, Part III. Exercise 8.4 provides regression output for the full model, includ-
ing all explanatory variables available in the data set, for predicting the number of days absent
from school. In this exercise we consider a forward-selection algorithm and add variables to the
model one-at-a-time. The table below shows the p-value and adjusted R2 of each model where we
include only the corresponding predictor. Based on this table, which variable should be added to
the model first?

variable ethnicity sex learner status

p-value 0.0007 0.3142 0.5870
R2
adj 0.0714 0.0001 0

8.11 Movie lovers, Part I. Suppose a social scientist is interested in studying what makes
audiences love or hate a movie. She collects a random sample of movies (genre, length, cast,
director, budget, etc.) as well as a measure of the success of the movie (score on a film review
aggregator website). If as part of her research she is interested in finding out which variables are
significant predictors of movie success, what type of model selection method should she use?

8.12 Movie lovers, Part II. Suppose an online media streaming company is interested in build-
ing a movie recommendation system. The website maintains data on the movies in their database
(genre, length, cast, director, budget, etc.) and additionally collects data from their subscribers
(demographic information, previously watched movies, how they rated previously watched movies,
etc.). The recommendation system will be deemed successful if subscribers actually watch, and
rate highly, the movies recommended to them. Should the company use the adjusted R2 or the
p-value approach in selecting variables for their recommendation system?
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8.5.3 Checking model assumptions using graphs

8.13 Baby weights, Part V. Exercise 8.3 presents a regression model for predicting the average
birth weight of babies based on length of gestation, parity, height, weight, and smoking status of
the mother. Determine if the model assumptions are met using the plots below. If not, describe
how to proceed with the analysis.
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8.14 GPA and IQ. A regression model for predicting GPA from gender and IQ was fit, and
both predictors were found to be statistically significant. Using the plots given below, determine
if this regression model is appropriate for these data.
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8.5.4 Introduction to logistic regression

8.15 Possum classification, Part I. The common brushtail possum of the Australia region is a
bit cuter than its distant cousin, the American opossum (see Figure 7.5 on page 334). We consider
104 brushtail possums from two regions in Australia, where the possums may be considered a
random sample from the population. The first region is Victoria, which is in the eastern half of
Australia and traverses the southern coast. The second region consists of New South Wales and
Queensland, which make up eastern and northeastern Australia.

We use logistic regression to differentiate between possums in these two regions. The outcome
variable, called population, takes value 1 when a possum is from Victoria and 0 when it is from
New South Wales or Queensland. We consider five predictors: sex male (an indicator for a
possum being male), head length, skull width, total length, and tail length. Each variable
is summarized in a histogram. The full logistic regression model and a reduced model after variable
selection are summarized in the table.
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Full Model Reduced Model

Estimate SE Z Pr(>|Z|) Estimate SE Z Pr(>|Z|)
(Intercept) 39.2349 11.5368 3.40 0.0007 33.5095 9.9053 3.38 0.0007

sex male -1.2376 0.6662 -1.86 0.0632 -1.4207 0.6457 -2.20 0.0278
head length -0.1601 0.1386 -1.16 0.2480
skull width -0.2012 0.1327 -1.52 0.1294 -0.2787 0.1226 -2.27 0.0231
total length 0.6488 0.1531 4.24 0.0000 0.5687 0.1322 4.30 0.0000

tail length -1.8708 0.3741 -5.00 0.0000 -1.8057 0.3599 -5.02 0.0000

(a) Examine each of the predictors. Are there any outliers that are likely to have a very large
influence on the logistic regression model?

(b) The summary table for the full model indicates that at least one variable should be eliminated
when using the p-value approach for variable selection: head length. The second component
of the table summarizes the reduced model following variable selection. Explain why the
remaining estimates change between the two models.
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8.16 Challenger disaster, Part I. On January 28, 1986, a routine launch was anticipated for
the Challenger space shuttle. Seventy-three seconds into the flight, disaster happened: the shuttle
broke apart, killing all seven crew members on board. An investigation into the cause of the
disaster focused on a critical seal called an O-ring, and it is believed that damage to these O-rings
during a shuttle launch may be related to the ambient temperature during the launch. The table
below summarizes observational data on O-rings for 23 shuttle missions, where the mission order
is based on the temperature at the time of the launch. Temp gives the temperature in Fahrenheit,
Damaged represents the number of damaged O-rings, and Undamaged represents the number of
O-rings that were not damaged.

Shuttle Mission 1 2 3 4 5 6 7 8 9 10 11 12

Temperature 53 57 58 63 66 67 67 67 68 69 70 70
Damaged 5 1 1 1 0 0 0 0 0 0 1 0
Undamaged 1 5 5 5 6 6 6 6 6 6 5 6

Shuttle Mission 13 14 15 16 17 18 19 20 21 22 23

Temperature 70 70 72 73 75 75 76 76 78 79 81
Damaged 1 0 0 0 0 1 0 0 0 0 0
Undamaged 5 6 6 6 6 5 6 6 6 6 6

(a) Each column of the table above represents a different shuttle mission. Examine these data
and describe what you observe with respect to the relationship between temperatures and
damaged O-rings.

(b) Failures have been coded as 1 for a damaged O-ring and 0 for an undamaged O-ring, and
a logistic regression model was fit to these data. A summary of this model is given below.
Describe the key components of this summary table in words.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004

Temperature -0.2162 0.0532 -4.07 0.0000

(c) Write out the logistic model using the point estimates of the model parameters.

(d) Based on the model, do you think concerns regarding O-rings are justified? Explain.

8.17 Possum classification, Part II. A logistic regression model was proposed for classifying
common brushtail possums into their two regions in Exercise 8.15. The outcome variable took
value 1 if the possum was from Victoria and 0 otherwise.

Estimate SE Z Pr(>|Z|)
(Intercept) 33.5095 9.9053 3.38 0.0007

sex male -1.4207 0.6457 -2.20 0.0278
skull width -0.2787 0.1226 -2.27 0.0231
total length 0.5687 0.1322 4.30 0.0000

tail length -1.8057 0.3599 -5.02 0.0000

(a) Write out the form of the model. Also identify which of the variables are positively associated
when controlling for other variables.

(b) Suppose we see a brushtail possum at a zoo in the US, and a sign says the possum had been
captured in the wild in Australia, but it doesn’t say which part of Australia. However, the sign
does indicate that the possum is male, its skull is about 63 mm wide, its tail is 37 cm long,
and its total length is 83 cm. What is the reduced model’s computed probability that this
possum is from Victoria? How confident are you in the model’s accuracy of this probability
calculation?
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8.18 Challenger disaster, Part II. Exercise 8.16 introduced us to O-rings that were identified
as a plausible explanation for the breakup of the Challenger space shuttle 73 seconds into takeoff
in 1986. The investigation found that the ambient temperature at the time of the shuttle launch
was closely related to the damage of O-rings, which are a critical component of the shuttle. See
this earlier exercise if you would like to browse the original data.
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(a) The data provided in the previous exercise are shown in the plot. The logistic model fit to
these data may be written as

log

(
p̂

1− p̂

)
= 11.6630− 0.2162× Temperature

where p̂ is the model-estimated probability that an O-ring will become damaged. Use the
model to calculate the probability that an O-ring will become damaged at each of the following
ambient temperatures: 51, 53, and 55 degrees Fahrenheit. The model-estimated probabilities
for several additional ambient temperatures are provided below, where subscripts indicate the
temperature:

p̂57 = 0.341 p̂59 = 0.251 p̂61 = 0.179 p̂63 = 0.124

p̂65 = 0.084 p̂67 = 0.056 p̂69 = 0.037 p̂71 = 0.024

(b) Add the model-estimated probabilities from part (a) on the plot, then connect these dots using
a smooth curve to represent the model-estimated probabilities.

(c) Describe any concerns you may have regarding applying logistic regression in this application,
and note any assumptions that are required to accept the model’s validity.



Appendix A

End of chapter exercise
solutions

1 Introduction to data

1.1 (a) Treatment: 10/43 = 0.23→ 23%.
Control: 2/46 = 0.04→ 4%. (b) There is a 19%
difference between the pain reduction rates in
the two groups. At first glance, it appears pa-
tients in the treatment group are more likely to
experience pain reduction from the acupuncture
treatment. (c) Answers may vary but should be
sensible. Two possible answers: 1Though the
groups’ difference is big, I’m skeptical the re-
sults show a real difference and think this might
be due to chance. 2The difference in these rates
looks pretty big, so I suspect acupuncture is hav-
ing a positive impact on pain.

1.3 (a) 143,196 eligible study subjects born
in Southern California between 1989 and 1993.
(b) Measurements of carbon monoxide, nitro-
gen dioxide, ozone, and particulate matter less
than 10µg/m3 (PM10) collected at air-quality-
monitoring stations as well as length of gesta-
tion. Continuous numerical variables. (c) “Is
there an association between air pollution expo-
sure and preterm births?”

1.5 (a) 160 children. (b) Age (numerical, con-
tinuous), sex (categorical), whether they were
an only child or not (categorical), and whether
they cheated or not (categorical). (c) Research
question: “Does explicitly telling children not to
cheat affect their likelihood to cheat?”

1.7 (a) 50 × 3 = 150. (b) Four continuous
numerical variables: sepal length, sepal width,
petal length, and petal width. (c) One categor-
ical variable, species, with three levels: setosa,
versicolor, and virginica.

1.9 (a) Population: all births, sample: 143,196
births between 1989 and 1993 in Southern Cali-
fornia. (b) If births in this time span at the ge-
ography can be considered to be representative
of all births, then the results are generalizable to
the population of Southern California. However,
since the study is observational the findings can-
not be used to establish causal relationships.

1.11 (a) Population: all asthma patients aged
18-69 who rely on medication for asthma treat-
ment. Sample: 600 such patients. (b) If the
patients in this sample, who are likely not ran-
domly sampled, can be considered to be repre-
sentative of all asthma patients aged 18-69 who
rely on medication for asthma treatment, then
the results are generalizable to the population
defined above. Additionally, since the study is
experimental, the findings can be used to estab-
lish causal relationships.

1.13 (a) Observation. (b) Variable. (c) Sam-
ple statistic (mean). (d) Population parameter
(mean).

405
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1.15 (a) Explanatory: number of study hours
per week. Response: GPA. (b) Somewhat weak
positive relationship with data becoming more
sparse as the number of study hours increases.
One responded reported a GPA above 4.0, which
is clearly a data error. There are a few respon-
dents who reported unusually high study hours
(60 and 70 hours/week). Variability in GPA is
much higher for students who study less than
those who study more, which might be due to
the fact that there aren’t many respondents who
reported studying higher hours. (c) Observa-
tional. (d) Since observational, cannot infer cau-
sation.

1.17 (a) Observational. (b) Use stratified sam-
pling to randomly sample a fixed number of stu-
dents, say 10, from each section for a total sam-
ple size of 40 students.

1.19 (a) Positive, non-linear, somewhat strong.
Countries in which a higher percentage of the
population have access to the internet also tend
to have higher average life expectancies, however
rise in life expectancy trails off before around 80
years old. (b) Observational. (c) Wealth: coun-
tries with individuals who can widely afford the
internet can probably also afford basic medical
care. (Note: Answers may vary.)

1.21 (a) Simple random sampling is okay.
In fact, it’s rare for simple random sampling to
not be a reasonable sampling method! (b) The
student opinions may vary by field of study, so
the stratifying by this variable makes sense and
would be reasonable. (c) Students of similar
ages are probably going to have more similar
opinions, and we want clusters to be diverse with
respect to the outcome of interest, so this would
not be a good approach. (Additional thought:
the clusters in this case may also have very dif-
ferent numbers of people, which can also create
unexpected sample sizes.)

1.23 (a) The cases are 200 randomly sampled
men and women. (b) The response variable
is attitude towards a fictional microwave oven.
(c) The explanatory variable is dispositional at-
titude. (d) Yes, the cases are sampled randomly.
(e) This is an observational study since there is
no random assignment to treatments. (f) No,
we cannot establish a causal link between the ex-

planatory and response variables since the study
is observational. (g) Yes, the results of the study
can be generalized to the population at large
since the sample is random.

1.25 (a) Non-responders may have a different
response to this question, e.g. parents who re-
turned the surveys likely don’t have difficulty
spending time with their children. (b) It is un-
likely that the women who were reached at the
same address 3 years later are a random sample.
These missing responders are probably renters
(as opposed to homeowners) which means that
they might be in a lower socio- economic sta-
tus than the respondents. (c) There is no con-
trol group in this study, this is an observational
study, and there may be confounding variables,
e.g. these people may go running because they
are generally healthier and/or do other exer-
cises.

1.27 (a) Simple random sample. Non-response
bias, if only those people who have strong
opinions about the survey responds his sample
may not be representative of the population.
(b) Convenience sample. Under coverage bias,
his sample may not be representative of the pop-
ulation since it consists only of his friends. It
is also possible that the study will have non-
response bias if some choose to not bring back
the survey. (c) Convenience sample. This will
have a similar issues to handing out surveys to
friends. (d) Multi-stage sampling. If the classes
are similar to each other with respect to student
composition this approach should not introduce
bias, other than potential non-response bias.

1.29 No, students were not randomly sampled
(voluntary sample) and the sample only contains
college students at a university in Ontario.

1.31 (a) Exam performance. (b) Light level:
fluorescent overhead lighting, yellow overhead
lighting, no overhead lighting (only desk lamps).
(c) Sex: man, woman.

1.33 (a) Exam performance. (b) Light level
(overhead lighting, yellow overhead lighting, no
overhead lighting) and noise level (no noise,
construction noise, and human chatter noise).
(c) Since the researchers want to ensure equal
gender representation, sex will be a blocking
variable.
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1.35 Need randomization and blinding. One
possible outline: (1) Prepare two cups for each
participant, one containing regular Coke and
the other containing Diet Coke. Make sure the
cups are identical and contain equal amounts of
soda. Label the cups A (regular) and B (diet).
(Be sure to randomize A and B for each trial!)
(2) Give each participant the two cups, one cup
at a time, in random order, and ask the partici-
pant to record a value that indicates how much
she liked the beverage. Be sure that neither the
participant nor the person handing out the cups
knows the identity of the beverage to make this a
double- blind experiment. (Answers may vary.)

1.37 (a) Experiment. (b) Treatment: 25 grams
of chia seeds twice a day, control: placebo.
(c) Yes, gender. (d) Yes, single blind since the
patients were blinded to the treatment they re-
ceived. (e) Since this is an experiment, we can
make a causal statement. However, since the
sample is not random, the causal statement can-
not be generalized to the population at large.

1.39 (a) 1: linear. 3: nonlinear.
(b) 4: linear. (c) 2.
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1.43 (a) Population mean, µ2007 = 52; sam-
ple mean, x̄2008 = 58. (b) Population mean,
µ2001 = 3.37; sample mean, x̄2012 = 3.59.

1.45 Any 10 employees whose average number
of days off is between the minimum and the
mean number of days off for the entire work-
force at this plant.

1.47 (a) Dist 2 has a higher mean since 20 >
13, and a higher standard deviation since 20
is further from the rest of the data than 13.
(b) Dist 1 has a higher mean since −20 > −40,
and Dist 2 has a higher standard deviation since
-40 is farther away from the rest of the data than
-20. (c) Dist 2 has a higher mean since all val-
ues in this distribution are higher than those
in Dist 1, but both distribution have the same
standard deviation since they are equally vari-
able around their respective means. (d) Both

distributions have the same mean since they’re
both centered at 300, but Dist 2 has a higher
standard deviation since the observations are
farther from the mean than in Dist 1.

1.49 (a) Q1 ≈ 5, median ≈ 15, Q3 ≈ 35
(b) Since the distribution is right skewed, we
would expect the mean to be higher than the
median.

1.51 (a) About 30. (b) Since the distribu-
tion is right skewed the mean is higher than
the median. (c) Q1: between 15 and 20, Q3:
between 35 and 40, IQR: about 20. (d) Val-
ues that are considered to be unusually low
or high lie more than 1.5×IQR away from the
quartiles. Upper fence: Q3 + 1.5 × IQR =
37.5 + 1.5 × 20 = 67.5; Lower fence: Q1 - 1.5
× IQR = 17.5 + 1.5 × 20 = −12.5; The lowest
AQI recorded is not lower than 5 and the high-
est AQI recorded is not higher than 65, which
are both within the fences. Therefore none of
the days in this sample would be considered to
have an unusually low or high AQI.

1.53 The histogram shows that the distribu-
tion is bimodal, which is not apparent in the
box plot. The box plot makes it easy to iden-
tify more precise values of observations outside
of the whiskers.

1.55 (a) The distribution of number of pets per
household is likely right skewed as there is a nat-
ural boundary at 0 and only a few people have
many pets. Therefore the center would be best
described by the median, and variability would
be best described by the IQR. (b) The distribu-
tion of number of distance to work is likely right
skewed as there is a natural boundary at 0 and
only a few people live a very long distance from
work. Therefore the center would be best de-
scribed by the median, and variability would be
best described by the IQR. (c) The distribution
of heights of males is likely symmetric. There-
fore the center would be best described by the
mean, and variability would be best described
by the standard deviation.

1.57 No, we would expect this distribution to
be right skewed. There are two reasons for this:
(1) there is a natural boundary at 0 (it is not
possible to watch less than 0 hours of TV),
(2) the standard deviation of the distribution
is very large compared to the mean.
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1.59 The statement “50% of Facebook users
have over 100 friends” means that the median
number of friends is 100, which is lower than
the mean number of friends (190), which sug-
gests a right skewed distribution for the number
of friends of Facebook users.

1.61 (a) The median is a much better measure
of the typical amount earned by these 42 people.
The mean is much higher than the income of 40
of the 42 people. This is because the mean is an
arithmetic average and gets affected by the two
extreme observations. The median does not get
effected as much since it is robust to outliers.
(b) The IQR is a much better measure of vari-
ability in the amounts earned by nearly all of
the 42 people. The standard deviation gets af-
fected greatly by the two high salaries, but the
IQR is robust to these extreme observations.

1.63 (a) The distribution is unimodal and sym-
metric with a mean of about 25 minutes and a
standard deviation of about 5 minutes. There
does not appear to be any counties with un-
usually high or low mean travel times. Since
the distribution is already unimodal and sym-
metric, a log transformation is not necessary.
(b) Answers will vary. There are pockets of
longer travel time around DC, Southeastern NY,
Chicago, Minneapolis, Los Angeles, and many
other big cities. There is also a large section
of shorter average commute times that overlap
with farmland in the Midwest. Many farmers’
homes are adjacent to their farmland, so their
commute would be brief, which may explain why
the average commute time for these counties is
relatively low.

1.65 (a) We see the order of the categories
and the relative frequencies in the bar plot.
(b) There are no features that are apparent in
the pie chart but not in the bar plot. (c) We
usually prefer to use a bar plot as we can also
see the relative frequencies of the categories in
this graph.

1.67 The vertical locations at which the ideo-
logical groups break into the Yes, No, and Not
Sure categories differ, which indicates that like-

lihood of supporting the DREAM act varies by
political ideology. This suggests that the two
variables may be dependent.

1.69 (a) (i) False. Instead of comparing counts,
we should compare percentages of people in
each group who suffered cardiovascular prob-
lems. (ii) True. (iii) False. Association does not
imply causation. We cannot infer a causal rela-
tionship based on an observational study. The
difference from part (ii) is subtle. (iv) True.
(b) Proportion of all patients who had cardio-
vascular problems: 7,979

227,571
≈ 0.035

(c) The expected number of heart attacks in
the rosiglitazone group, if having cardiovascular
problems and treatment were independent, can
be calculated as the number of patients in that
group multiplied by the overall cardiovascular
problem rate in the study: 67, 593 ∗ 7,979

227,571
≈

2370.
(d) (i) H0: The treatment and cardiovascu-
lar problems are independent. They have no
relationship, and the difference in incidence
rates between the rosiglitazone and pioglitazone
groups is due to chance. HA: The treatment and
cardiovascular problems are not independent.
The difference in the incidence rates between the
rosiglitazone and pioglitazone groups is not due
to chance and rosiglitazone is associated with
an increased risk of serious cardiovascular prob-
lems. (ii) A higher number of patients with car-
diovascular problems than expected under the
assumption of independence would provide sup-
port for the alternative hypothesis as this would
suggest that rosiglitazone increases the risk of
such problems. (iii) In the actual study, we ob-
served 2,593 cardiovascular events in the rosigli-
tazone group. In the 1,000 simulations under
the independence model, we observed somewhat
less than 2,593 in every single simulation, which
suggests that the actual results did not come
from the independence model. That is, the vari-
ables do not appear to be independent, and we
reject the independence model in favor of the al-
ternative. The study’s results provide convinc-
ing evidence that rosiglitazone is associated with
an increased risk of cardiovascular problems.
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2 Probability

2.1 (a) False. These are independent trials.
(b) False. There are red face cards. (c) True. A
card cannot be both a face card and an ace.

2.3 (a) 10 tosses. Fewer tosses mean more vari-
ability in the sample fraction of heads, mean-
ing there’s a better chance of getting at least
60% heads. (b) 100 tosses. More flips means
the observed proportion of heads would often
be closer to the average, 0.50, and therefore also
above 0.40. (c) 100 tosses. With more flips,
the observed proportion of heads would often be
closer to the average, 0.50. (d) 10 tosses. Fewer
flips would increase variability in the fraction of
tosses that are heads.

2.5 (a) 0.510 = 0.00098. (b) 0.510 = 0.00098.
(c) P (at least one tails) = 1 − P (no tails) =
1− (0.510) ≈ 1− 0.001 = 0.999.

2.7 (a) No, there are voters who are both inde-
pendent and swing voters.
(b)

(c) Each Independent voter is either a swing
voter or not. Since 35% of voters are Indepen-
dents and 11% are both Independent and swing
voters, the other 24% must not be swing vot-
ers. (d) 0.47. (e) 0.53. (f) P(Independent) ×
P(swing) = 0.35 × 0.23 = 0.08, which does not
equal P(Independent and swing) = 0.11, so the
events are dependent.

2.9 (a) If the class is not graded on a curve,
they are independent. If graded on a curve,
then neither independent nor disjoint – unless
the instructor will only give one A, which is a
situation we will ignore in parts (b) and (c).
(b) They are probably not independent: if you
study together, your study habits would be re-
lated, which suggests your course performances
are also related. (c) No. See the answer to
part (a) when the course is not graded on a
curve. More generally: if two things are un-

related (independent), then one occurring does
not preclude the other from occurring.

2.11 (a) 0.16 + 0.09 = 0.25. (b) 0.17 + 0.09 =
0.26. (c) Assuming that the education level of
the husband and wife are independent: 0.25 ×
0.26 = 0.065. You might also notice we actually
made a second assumption: that the decision
to get married is unrelated to education level.
(d) The husband/wife independence assumption
is probably not reasonable, because people often
marry another person with a comparable level
of education. We will leave it to you to think
about whether the second assumption noted in
part (c) is reasonable.

2.13 (a) Invalid. Sum is greater than 1.
(b) Valid. Probabilities are between 0 and 1,
and they sum to 1. In this class, every student
gets a C. (c) Invalid. Sum is less than 1. (d) In-
valid. There is a negative probability. (e) Valid.
Probabilities are between 0 and 1, and they sum
to 1. (f) Invalid. There is a negative probability.

2.15 (a) No, but we could if A and B are in-
dependent. (b-i) 0.21. (b-ii) 0.79. (b-iii) 0.3.
(c) No, because 0.1 6= 0.21, where 0.21 was
the value computed under independence from
part (a). (d) 0.143.

2.17 (a) No, 0.18 of respondents fall into this
combination. (b) 0.60 + 0.20 − 0.18 = 0.62.
(c) 0.18/0.20 = 0.9. (d) 0.11/0.33 ≈ 0.33.
(e) No, otherwise the answers to (c) and (d)
would be the same. (f) 0.06/0.34 ≈ 0.18.

2.19 (a) No. There are 6 females who like
Five Guys Burgers. (b) 162/248 = 0.65.
(c) 181/252 = 0.72. (d) Under the assumption
of a dating choices being independent of ham-
burger preference, which on the surface seems
reasonable: 0.65× 0.72 = 0.468. (e) (252 + 6−
1)/500 = 0.514.

2.21 (a)
Can construct

box plots?
Passed?

yes,  0.8

Yes,  0.86
0.8*0.86  =  0.688

No,  0.14
0.8*0.14  =  0.112

no,  0.2

Yes,  0.65
0.2*0.65  =  0.13

No,  0.35
0.2*0.35  =  0.07

(b) 0.84
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2.23 0.8247.
HIV? Result

yes,  0.259

positive,  0.997
0.259*0.997  =  0.2582

negative,  0.003
0.259*0.003  =  0.0008

no,  0.741

positive,  0.074
0.741*0.074  =  0.0548

negative,  0.926
0.741*0.926  =  0.6862

2.25 0.0714. Even when a patient tests pos-
itive for lupus, there is only a 7.14% chance
that he actually has lupus. House may be right.

Lupus? Result

yes,  0.02

positive,  0.98
0.02*0.98  =  0.0196

negative,  0.02
0.02*0.02  =  0.0004

no,  0.98

positive,  0.26
0.98*0.26  =  0.2548

negative,  0.74
0.98*0.74  =  0.7252

2.27 (a) 0.3. (b) 0.3. (c) 0.3. (d) 0.3 × 0.3 =
0.09. (e) Yes, the population that is being sam-
pled from is identical in each draw.

2.29 (a) 2/9 ≈ 0.22. (b) 3/9 ≈ 0.33. (c) 3
10
×

2
9
≈ 0.067. (d) No, e.g. in this exercise, remov-

ing one chip meaningfully changes the probabil-

ity of what might be drawn next.

2.31 P (1leggings, 2jeans, 3jeans) = 5
24
× 7

23
×

6
22

= 0.0173. However, the person with leggings
could have come 2nd or 3rd, and these each have
this same probability, so 3× 0.0173 = 0.0519.

2.33 (a) 13. (b) No, these 27 students are not
a random sample from the university’s student
population. For example, it might be argued
that the proportion of smokers among students
who go to the gym at 9 am on a Saturday morn-
ing would be lower than the proportion of smok-
ers in the university as a whole.

2.35 (a) E(X) = 3.59. SD(X) = 9.64. (b) E(X)
= -1.41. SD(X) = 9.64. (c) No, the expected
net profit is negative, so on average you expect
to lose money.

2.37 5% increase in value.

2.39 E = -0.0526. SD = 0.9986.

2.41 (a) E = $3.90. SD = $0.34.
(b) E = $27.30. SD = $0.89.

2.43 Approximate answers are OK.
(a) (29 + 32)/144 = 0.42. (b) 21/144 = 0.15.
(c) (26 + 12 + 15)/144 = 0.37.

3 Distributions of random variables

3.1 (a) 8.85%. (b) 6.94%. (c) 58.86%.
(d) 4.56%.

(a)
−1.35 0

(b)
0 1.48

(c)
0

(d)
−2 0 2

3.3 (a) Verbal: N(µ = 151, σ = 7), Quant:
N(µ = 153, σ = 7.67). (b) ZV R = 1.29,
ZQR = 0.52.

VR

Z = 1.29

QR

Z = 0.52

(c) She scored 1.29 standard deviations above

the mean on the Verbal Reasoning section and
0.52 standard deviations above the mean on
the Quantitative Reasoning section. (d) She
did better on the Verbal Reasoning section
since her Z-score on that section was higher.
(e) PercV R = 0.9007 ≈ 90%, PercQR =
0.6990 ≈ 70%. (f) 100%− 90% = 10% did bet-
ter than her on VR, and 100%−70% = 30% did
better than her on QR. (g) We cannot compare
the raw scores since they are on different scales.
Comparing her percentile scores is more appro-
priate when comparing her performance to oth-
ers. (h) Answer to part (b) would not change
as Z-scores can be calculated for distributions
that are not normal. However, we could not an-
swer parts (d)-(f) since we cannot use the nor-
mal probability table to calculate probabilities
and percentiles without a normal model.

3.5 (a) Z = 0.84, which corresponds to approx-
imately 160 on QR. (b) Z = −0.52, which cor-
responds to approximately 147 on VR.

3.7 (a) Z = 1.2→ 0.1151.
(b) Z = −1.28→ 70.6◦F or colder.
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3.9 (a) N(25, 2.78). (b) Z = 1.08 → 0.1401.
(c) The answers are very close because only the
units were changed. (The only reason why they
differ at all is because 28◦C is 82.4◦F, not pre-
cisely 83◦F.) (d) Since IQR = Q3−Q1, we first
need to find Q3 and Q1 and take the difference
between the two. Remember that Q3 is the 75th

and Q1 is the 25th percentile of a distribution.
Q1 = 23.13, Q3 = 26.86, IQR = 26. 86 - 23.13
= 3.73.

3.11 (a) Z = 0.67. (b) µ = $1650, x = $1800.
(c) 0.67 = 1800−1650

σ
→ σ = $223.88.

3.13 Z = 1.56→ 0.0594, i.e. 6%.

3.15 (a) Z = 0.73→ 0.2327. (b) If you are bid-
ding on only one auction and set a low maximum
bid price, someone will probably outbid you. If
you set a high maximum bid price, you may win
the auction but pay more than is necessary. If
bidding on more than one auction, and you set
your maximum bid price very low, you probably
won’t win any of the auctions. However, if the
maximum bid price is even modestly high, you
are likely to win multiple auctions. (c) An an-
swer roughly equal to the 10th percentile would
be reasonable. Regrettably, no percentile cut-
off point guarantees beyond any possible event
that you win at least one auction. However, you
may pick a higher percentile if you want to be
more sure of winning an auction. (d) Answers
will vary a little but should correspond to the
answer in part (c). We use the 10th percentile:
Z = −1.28→ $69.80.

3.17 (a) 70% of the data are within 1 stan-
dard deviation of the mean, 95% are within
2 and 100% are within 3 standard deviations
of the mean. Therefore, we can say that
the data approximately follow the 68-95-99.7%
Rule. (b) The distribution is unimodal and sym-
metric. The superimposed normal curve seems
to approximate the distribution pretty well. The
points on the normal probability plot also seem
to follow a straight line. There is one possible
outlier on the lower end that is apparent in both
graphs, but it is not too extreme. We can say
that the distribution is nearly normal.

3.19 (a) No. The cards are not independent.
For example, if the first card is an ace of clubs,
that implies the second card cannot be an ace
of clubs. Additionally, there are many possible

categories, which would need to be simplified.
(b) No. There are six events under considera-
tion. The Bernoulli distribution allows for only
two events or categories. Note that rolling a
die could be a Bernoulli trial if we simply to
two events, e.g. rolling a 6 and not rolling a 6,
though specifying such details would be neces-
sary.

3.21 (a) (1 − 0.471)2 × 0.471 = 0.1318.
(b) 0.4713 = 0.1045. (c) µ = 1/0.471 = 2.12,
σ =

√
2.38 = 1.54. (d) µ = 1/0.30 = 3.33,

σ = 2.79. (e) When p is smaller, the event is
rarer, meaning the expected number of trials be-
fore a success and the standard deviation of the
waiting time are higher.

3.23 (a) 0.8752 × 0.125 = 0.096.
(b) µ = 8, σ = 7.48.

3.25 (a) Binomial conditions are met: (1) In-
dependent trials: In a random sample, whether
or not one 18-20 year old has consumed alco-
hol does not depend on whether or not another
one has. (2) Fixed number of trials: n = 10.
(3) Only two outcomes at each trial: Consumed
or did not consume alcohol. (4) Probability of
a success is the same for each trial: p = 0.697.
(b) 0.203. (c) 0.203. (d) 0.167. (e) 0.997.

3.27 (a) µ = 34.85, σ = 3.25 (b) Z =
45−34.85

3.25
= 3.12. 45 is more than 3 standard

deviations away from the mean, we can assume
that it is an unusual observation. Therefore
yes, we would be surprised. (c) Using the nor-
mal approximation, 0.0009. With 0.5 correction,
0.0015.

3.29 Want to find the probability that there
will be 1,786 or more enrollees. Using the nor-
mal approximation: 0.0582. With a 0.5 correc-
tion: 0.0559.

3.31 (a) 1 − 0.753 = 0.5781. (b) 0.1406.
(c) 0.4219. (d) 1− 0.253 = 0.9844.

3.33 (a) Geometric distribution: 0.109. (b) Bi-
nomial: 0.219. (c) Binomial: 0.137. (d) 1 −
0.8756 = 0.551. (e) Geometric: 0.084. (f) Using
a binomial distribution with n = 6 and p = 0.75,
we see that µ = 4.5, σ = 1.06, and Z = 2.36.
Since this is not within 2 SD, it may be consid-
ered unusual.

3.35 0 wins (-$3): 0.1458. 1 win (-$1): 0.3936.
2 wins (+$1): 0.3543. 3 wins (+$3): 0.1063.
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3.37 (a)
Anna

1/5 ×
Ben

1/4 ×
Carl

1/3 ×
Damian

1/2 ×
Eddy

1/1 =
1/5! = 1/120. (b) Since the probabilities must
add to 1, there must be 5! = 120 possible order-
ings. (c) 8! = 40,320.

3.39 (a) 0.0804. (b) 0.0322. (c) 0.0193.

3.41 (a) Negative binomial with n = 4 and
p = 0.55, where a success is defined here as a
female student. The negative binomial setting
is appropriate since the last trial is fixed but the
order of the first 3 trials is unknown. (b) 0.1838.
(c)
(

3
1

)
= 3. (d) In the binomial model there are

no restrictions on the outcome of the last trial.
In the negative binomial model the last trial is
fixed. Therefore we are interested in the number
of ways of orderings of the other k− 1 successes
in the first n− 1 trials.

3.43 (a) Poisson with λ = 75. (b) µ = λ = 75,
σ =

√
λ = 8.66. (c) Z = −1.73. Since 60

is within 2 standard deviations of the mean,
it would not generally be considered unusual.
Note that we often use this rule of thumb even
when the normal model does not apply. (d) Us-
ing Poisson with λ = 75: 0.0402.

4 Foundations for inference

4.1 (a) Mean. Each student reports a numeri-
cal value: a number of hours. (b) Mean. Each
student reports a number, which is a percent-
age, and we can average over these percentages.
(c) Proportion. Each student reports Yes or No,
so this is a categorical variable and we use a
proportion. (d) Mean. Each student reports a
number, which is a percentage like in part (b).
(e) Proportion. Each student reports whether
or not s/he expects to get a job, so this is a
categorical variable and we use a proportion.

4.3 (a) Mean: 13.65. Median: 14. (b) SD:
1.91. IQR: 15 − 13 = 2. (c) Z16 = 1.23, which
is not unusual since it is within 2 SD of the
mean. Z18 = 2.28, which is generally consid-
ered unusual. (d) No. Point estimates that are
based on samples only approximate the popu-
lation parameter, and they vary from one sam-
ple to another. (e) We use the SE, which is
1.91/

√
100 = 0.191 for this sample’s mean.

4.5 (a) We are building a distribution of sam-
ple statistics, in this case the sample mean. Such
a distribution is called a sampling distribution.
(b) Because we are dealing with the distribution
of sample means, we need to check to see if the
Central Limit Theorem applies. Our sample size
is greater than 30, and we are told that random
sampling is employed. With these conditions
met, we expect that the distribution of the sam-
ple mean will be nearly normal and therefore
symmetric. (c) Because we are dealing with a
sampling distribution, we measure its variabil-
ity with the standard error. SE = 18.2/

√
45 =

2.713. (d) The sample means will be more vari-
able with the smaller sample size.

4.7 Recall that the general formula is

point estimate± Z? × SE

First, identify the three different values. The
point estimate is 45%, Z? = 1.96 for a 95% con-
fidence level, and SE = 1.2%. Then, plug the
values into the formula:

45%± 1.96× 1.2% → (42.6%, 47.4%)

We are 95% confident that the proportion of US
adults who live with one or more chronic condi-
tions is between 42.6% and 47.4%.

4.9 (a) False. Confidence intervals provide a
range of plausible values, and sometimes the
truth is missed. A 95% confidence interval
“misses” about 5% of the time. (b) True. Notice
that the description focuses on the true popu-
lation value. (c) True. If we examine the 95%
confidence interval computed in Exercise 4.9, we
can see that 50% is not included in this inter-
val. This means that in a hypothesis test, we
would reject the null hypothesis that the pro-
portion is 0.5. (d) False. The standard error
describes the uncertainty in the overall estimate
from natural fluctuations due to randomness,
not the uncertainty corresponding to individu-
als’ responses.

4.11 (a) We are 95% confident that Ameri-
cans spend an average of 1.38 to 1.92 hours per
day relaxing or pursuing activities they enjoy.
(b) Their confidence level must be higher as the
width of the confidence interval increases as the
confidence level increases. (c) The new mar-
gin of error will be smaller since as the sam-
ple size increases the standard error decreases,
which will decrease the margin of error.
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4.13 (a) False. Provided the data distribution
is not very strongly skewed (n = 64 in this sam-
ple, so we can be slightly lenient with the skew),
the sample mean will be nearly normal, allow-
ing for the method normal approximation de-
scribed. (b) False. Inference is made on the
population parameter, not the point estimate.
The point estimate is always in the confidence
interval. (c) True. (d) False. The confidence
interval is not about a sample mean. (e) False.
To be more confident that we capture the pa-
rameter, we need a wider interval. Think about
needing a bigger net to be more sure of catching
a fish in a murky lake. (f) True. Optional ex-
planation: This is true since the normal model
was used to model the sample mean. The mar-
gin of error is half the width of the interval, and
the sample mean is the midpoint of the interval.
(g) False. In the calculation of the standard
error, we divide the standard deviation by the
square root of the sample size. To cut the SE
(or margin of error) in half, we would need to
sample 22 = 4 times the number of people in the
initial sample.

4.15 Independence: sample from < 10% of
population, and it is a random sample. We can
assume that the students in this sample are in-
dependent of each other with respect to num-
ber of exclusive relationships they have been in.
Notice that there are no students who have had
no exclusive relationships in the sample, which
suggests some student responses are likely miss-
ing (perhaps only positive values were reported).
The sample size is at least 30. The skew is
strong, but the sample is very large so this is
not a concern. 90% CI: (2.97, 3.43). We are
90% confident that undergraduate students have
been in 2.97 to 3.43 exclusive relationships, on
average.

4.17 (a) H0 : µ = 8 (On average, New Yorkers
sleep 8 hours a night.)
HA : µ < 8 (On average, New Yorkers sleep less
than 8 hours a night.)
(b) H0 : µ = 15 (The average amount of com-
pany time each employee spends not working is
15 minutes for March Madness.)
HA : µ > 15 (The average amount of com-
pany time each employee spends not working is
greater than 15 minutes for March Madness.)

4.19 The hypotheses should be about the pop-

ulation mean (µ), not the sample mean. The
null hypothesis should have an equal sign and
the alternative hypothesis should be about the
null hypothesized value, not the observed sam-
ple mean. Correction:

H0 : µ = 10 hours

HA : µ > 10 hours

The one-sided test indicates that we are only
interested in showing that 10 is an underesti-
mate. Here the interest is in only one direction,
so a one-sided test seems most appropriate. If
we would also be interested if the data showed
strong evidence that 10 was an overestimate,
then the test should be two-sided.

4.21 (a) This claim does is not supported since
3 hours (180 minutes) is not in the interval.
(b) 2.2 hours (132 minutes) is in the 95% con-
fidence interval, so we do not have evidence to
say she is wrong. However, it would be more
appropriate to use the point estimate of the
sample. (c) A 99% confidence interval will be
wider than a 95% confidence interval, meaning it
would enclose this smaller interval. This means
132 minutes would be in the wider interval, and
we would not reject her claim based on a 99%
confidence level.

4.23 H0 : µ = 130. HA : µ 6= 130. Z = 1.39 →
p-value = 0.1646, which is larger than α = 0.05.
The data do not provide convincing evidence
that the true average calorie content in bags of
potato chips is different than 130 calories.

4.25 (a) Independence: The sample is random
and 64 patients would almost certainly make up
less than 10% of the ER residents. The sample
size is at least 30. No information is provided
about the skew. In practice, we would ask to
see the data to check this condition, but here we
will make the assumption that the skew is not
very strong. (b) H0 : µ = 127. HA : µ 6= 127.
Z = 2.15 → p-value = 0.0316. Since the p-
value is less than α = 0.05, we reject H0. The
data provide convincing evidence that the av-
erage ER wait time has increased over the last
year. (c) Yes, it would change. The p-value is
greater than 0.01, meaning we would fail to re-
ject H0 at α = 0.01.

4.27 Z = 1.65 = x̄−30

10/
√

70
→ x̄ = 31.97.
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4.29 (a) H0: Anti-depressants do not help
symptoms of Fibromyalgia. HA: Anti- depres-
sants do treat symptoms of Fibromyalgia. Re-
mark: Diana might also have taken special note
if her symptoms got much worse, so a more
scientific approach would have been to use a
two-sided test. If you proposed a two-sided
approach, your answers in (b) and (c) will be
different. (b) Concluding that anti-depressants
work for the treatment of Fibromyalgia symp-
toms when they actually do not. (c) Conclud-
ing that anti-depressants do not work for the
treatment of Fibromyalgia symptoms when they
actually do.

4.31 (a) Scenario I is higher. Recall that a
sample mean based on less data tends to be
less accurate and have larger standard errors.
(b) Scenario I is higher. The higher the confi-
dence level, the higher the corresponding margin
of error. (c) They are equal. The sample size
does not affect the calculation of the p- value
for a given Z-score. (d) Scenario I is higher. If
the null hypothesis is harder to reject (lower α),
then we are more likely to make a Type 2 Error
when the alternative hypothesis is true.

4.33 (a) The distribution is unimodal and
strongly right skewed with a median between 5
and 10 years old. Ages range from 0 to slightly
over 50 years old, and the middle 50% of the
distribution is roughly between 5 and 15 years
old. There are potential outliers on the higher
end. (b) When the sample size is small, the
sampling distribution is right skewed, just like
the population distribution. As the sample size
increases, the sampling distribution gets more
unimodal, symmetric, and approaches normal-
ity. The variability also decreases. This is con-
sistent with the Central Limit Theorem. (c) n
= 5: µx̄ = 10.44, σx̄ = 4.11; n = 30: µx̄ =
10.44, σx̄ = 1.68; n = 100: µx̄ = 10.44, σx̄ =
0.92. The centers of the sampling distributions
shown in part (b) appear to be around 10. It is
difficult to estimate the standard deviation for
the sampling distribution when n = 5 from the
histogram (since the distribution is somewhat
skewed). If 1.68 is a plausible estimate for the
standard deviation of the sampling distribution
when n = 30, then using the 68-95-99.7% Rule,
we would expect the values to range roughly be-
tween 10.44±3∗1.68 = (5.4, 15.48), which seems
to be the case. Similarly, when n = 100, we
would expect the values to range roughly be-

tween 10.44± 3 ∗ 0.92 = (7.68, 13.2), which also
seems to be the case.

4.35 (a) Right skewed. There is a long tail on
the higher end of the distribution but a much
shorter tail on the lower end. (b) Less than,
as the median would be less than the mean
in a right skewed distribution. (c) We should
not. (d) Even though the population distribu-
tion is not normal, the conditions for inference
are reasonably satisfied, with the possible ex-
ception of skew. If the skew isn’t very strong
(we should ask to see the data), then we can
use the Central Limit Theorem to estimate this
probability. For now, we’ll assume the skew
isn’t very strong, though the description sug-
gests it is at least moderate to strong. Use
N(1.3, SDx̄ = 0.3/

√
60): Z = 2.58 → 0.0049.

(e) It would decrease it by a factor of 1/
√

2.

4.37 The centers are the same in each plot,
and each data set is from a nearly normal dis-
tribution, though the histograms may not look
very normal since each represents only 100 data
points. The only way to tell which plot cor-
responds to which scenario is to examine the
variability of each distribution. Plot B is the
most variable, followed by Plot A, then Plot C.
This means Plot B will correspond to the origi-
nal data, Plot A to the sample means with size
5, and Plot C to the sample means with size 25.

4.39 (a) Z = −3.33 → 0.0004. (b) The
population SD is known and the data are
nearly normal, so the sample mean will be
nearly normal with distribution N(µ, σ/

√
n),

i.e. N(2.5, 0.0095). (c) Z = −10.54 → ≈ 0.
(d) See below:

2.41 2.44 2.47 2.50 2.53 2.56 2.59

Population
Sampling (n = 10)

(e) We could not estimate (a) without a nearly
normal population distribution. We also could
not estimate (c) since the sample size is not suffi-
cient to yield a nearly normal sampling distribu-
tion if the population distribution is not nearly
normal.
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4.41 (a) We cannot use the normal model for
this calculation, but we can use the histogram.
About 500 songs are shown to be longer than 5
minutes, so the probability is about 500/3000 =
0.167. (b) Two different answers are reasonable.
Option 1Since the population distribution is only
slightly skewed to the right, even a small sample
size will yield a nearly normal sampling distribu-
tion. We also know that the songs are sampled
randomly and the sample size is less than 10%
of the population, so the length of one song in
the sample is independent of another. We are
looking for the probability that the total length
of 15 songs is more than 60 minutes, which
means that the average song should last at least
60/15 = 4 minutes. Using SDx̄ = 1.63/

√
15,

Z = 1.31 → 0.0951. Option 2Since the popula-
tion distribution is not normal, a small sample
size may not be sufficient to yield a nearly nor-
mal sampling distribution. Therefore, we can-
not estimate the probability using the tools we
have learned so far. (c) We can now be confi-
dent that the conditions are satisfied. Z = 0.92
→ 0.1788.

4.43 (a) H0 : µ2009 = µ2004. HA : µ2009 6=
µ2004. (b) x̄2009− x̄2004 = −3.6 spam emails per
day. (c) The null hypothesis was not rejected,
and the data do not provide convincing evidence
that the true average number of spam emails per
day in years 2004 and 2009 are different. The
observed difference is about what we might ex-
pect from sampling variability alone. (d) Yes,
since the hypothesis of no difference was not re-
jected in part (c).

4.45 (a) H0 : p2009 = p2004. HA : p2009 6=
p2004. (b) -7%. (c) The null hypothesis was re-
jected. The data provide strong evidence that
the true proportion of those who once a month
or less frequently delete their spam email was
higher in 2004 than in 2009. The difference is so
large that it cannot easily be explained as being
due to chance. (d) No, since the null difference,
0, was rejected in part (c).

4.47 True. If the sample size is large, then the
standard error will be small, meaning even rel-
atively small differences between the null value
and point estimate can be statistically signifi-
cant.

5 Inference for numerical data

5.1 (a) df = 6 − 1 = 5, t?5 = 2.02 (col-
umn with two tails of 0.10, row with df = 5).
(b) df = 21 − 1 = 20, t?20 = 2.53 (column with
two tails of 0.02, row with df = 20). (c) df = 28,
t?28 = 2.05. (d) df = 11, t?11 = 3.11.

5.3 (a) between 0.025 and 0.05 (b) less than
0.005 (c) greater than 0.2 (d) between 0.01 and
0.025

5.5 The mean is the midpoint: x̄ = 20. Iden-
tify the margin of error: ME = 1.015, then use
t?35 = 2.03 and SE = s/

√
n in the formula for

margin of error to identify s = 3.

5.7 (a) H0: µ = 8 (New Yorkers sleep 8 hrs
per night on average.) HA: µ < 8 (New York-
ers sleep less than 8 hrs per night on average.)
(b) Independence: The sample is random and

from less than 10% of New Yorkers. The sample
is small, so we will use a t-distribution. For this
size sample, slight skew is acceptable, and the
min/max suggest there is not much skew in the
data. T = −1.75. df = 25− 1 = 24. (c) 0.025 <
p-value < 0.05. If in fact the true population
mean of the amount New Yorkers sleep per night
was 8 hours, the probability of getting a ran-
dom sample of 25 New Yorkers where the aver-
age amount of sleep is 7.73 hrs per night or less
is between 0.025 and 0.05. (d) Since p-value <
0.05, reject H0. The data provide strong evi-
dence that New Yorkers sleep less than 8 hours
per night on average. (e) No, as we rejected H0.

5.9 t?19 is 1.73 for a one-tail. We want the lower
tail, so set -1.73 equal to the T-score, then solve
for x̄: 56.91.
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5.11 (a) We will conduct a 1-sample t-test. H0:
µ = 5. HA: µ < 5. We’ll use α = 0.05. This is a
random sample, so the observations are indepen-
dent. To proceed, we assume the distribution of
years of piano lessons is approximately normal.
SE = 2.2/

√
20 = 0.4919. The test statistic is

T = (4.6 − 5)/SE = −0.81. df = 20 − 1 = 19.
The one-tail p-value is about 0.21, which is big-
ger than α = 0.05, so we do not reject H0. That
is, we do not have sufficiently strong evidence to
reject Georgianna’s claim.
(b) Using SE = 0.4919 and t?df=19 = 2.093, the
confidence interval is (3.57, 5.63). We are 95%
confident that the average number of years a
child takes piano lessons in this city is 3.57 to
5.63 years.
(c) They agree, since we did not reject the null
hypothesis and the null value of 5 was in the
t-interval.

5.13 If the sample is large, then the margin of
error will be about 1.96 × 100/

√
n. We want

this value to be less than 10, which leads to
n ≥ 384.16, meaning we need a sample size of
at least 385 (round up for sample size calcula-
tions!).

5.15 (a) Two-sided, we are evaluating a differ-
ence, not in a particular direction. (b) Paired,
data are recorded in the same cities at two dif-
ferent time points. The temperature in a city at
one point is not independent of the temperature
in the same city at another time point. (c) t-
test, sample is small and population standard
deviation is unknown.

5.17 (a) Since it’s the same students at the be-
ginning and the end of the semester, there is a
pairing between the datasets, for a given student
their beginning and end of semester grades are
dependent. (b) Since the subjects were sampled
randomly, each observation in the men’s group
does not have a special correspondence with ex-
actly one observation in the other (women’s)
group. (c) Since it’s the same subjects at the
beginning and the end of the study, there is a

pairing between the datasets, for a subject stu-
dent their beginning and end of semester artery
thickness are dependent. (d) Since it’s the same
subjects at the beginning and the end of the
study, there is a pairing between the datasets,
for a subject student their beginning and end of
semester weights are dependent.

5.19 (a) For each observation in one data set,
there is exactly one specially-corresponding ob-
servation in the other data set for the same geo-
graphic location. The data are paired. (b) H0 :
µdiff = 0 (There is no difference in average
daily high temperature between January 1, 1968
and January 1, 2008 in the continental US.)
HA : µdiff > 0 (Average daily high tempera-
ture in January 1, 1968 was lower than average
daily high temperature in January, 2008 in the
continental US.) If you chose a two-sided test,
that would also be acceptable. If this is the case,
note that your p-value will be a little bigger than
what is reported here in part (d). (c) Locations
are random and represent less than 10% of all
possible locations in the US. The sample size is
at least 30. We are not given the distribution
to check the skew. In practice, we would ask to
see the data to check this condition, but here we
will move forward under the assumption that it
is not strongly skewed. (d) T50 ≈ 1.60→ 0.05 <
p-value < 0.10. (e) Since the p-value > α
(since not given use 0.05), fail to reject H0. The
data do not provide strong evidence of temper-
ature warming in the continental US. However
it should be noted that the p-value is very close
to 0.05. (f) Type 2 Error, since we may have
incorrectly failed to reject H0. There may be
an increase, but we were unable to detect it.
(g) Yes, since we failed to reject H0, which had
a null value of 0.

5.21 (a) (-0.05, 2.25). (b) We are 90% con-
fident that the average daily high on January
1, 2008 in the continental US was 0.05 degrees
lower to 2.25 degrees higher than the average
daily high on January 1, 1968. (c) No, since 0
is included in the interval.
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5.23 (a) Each of the 36 mothers is related to
exactly one of the 36 fathers (and vice-versa),
so there is a special correspondence between
the mothers and fathers. (b) H0 : µdiff = 0.
HA : µdiff 6= 0. Independence: random sam-
ple from less than 10% of population. Sam-
ple size of at least 30. The skew of the differ-
ences is, at worst, slight. T35 = 2.72 → p-value
= 0.01. Since p-value < 0.05, reject H0. The
data provide strong evidence that the average
IQ scores of mothers and fathers of gifted chil-
dren are different, and the data indicate that
mothers’ scores are higher than fathers’ scores
for the parents of gifted children.

5.25 No, he should not move forward with the
test since the distributions of total personal in-
come are very strongly skewed. When sample
sizes are large, we can be a bit lenient with skew.
However, such strong skew observed in this exer-
cise would require somewhat large sample sizes,
somewhat higher than 30.

5.27 (a) These data are paired. For example,
the Friday the 13th in say, September 1991,
would probably be more similar to the Fri-
day the 6th in September 1991 than to Fri-
day the 6th in another month or year. (b) Let
µdiff = µsixth − µthirteenth. H0 : µdiff = 0.
HA : µdiff 6= 0. (c) Independence: The months
selected are not random. However, if we think
these dates are roughly equivalent to a simple
random sample of all such Friday 6th/13th date
pairs, then independence is reasonable. To pro-
ceed, we must make this strong assumption,
though we should note this assumption in any
reported results. Normality: With fewer than
10 observations, we would need to use the t-
distribution to model the sample mean. The
normal probability plot of the differences shows
an approximately straight line. There isn’t
a clear reason why this distribution would be
skewed, and since the normal quantile plot looks
reasonable, we can mark this condition as rea-
sonably satisfied. (d) T = 4.94 for df = 10−1 =
9→ p-value < 0.01. (e) Since p-value < 0.05, re-
ject H0. The data provide strong evidence that
the average number of cars at the intersection
is higher on Friday the 6th than on Friday the
13th. (We might believe this intersection is rep-
resentative of all roads, i.e. there is higher traf-
fic on Friday the 6th relative to Friday the 13th.

However, we should be cautious of the required
assumption for such a generalization.) (f) If the
average number of cars passing the intersection
actually was the same on Friday the 6th and
13th, then the probability that we would observe
a test statistic so far from zero is less than 0.01.
(g) We might have made a Type 1 Error, i.e.
incorrectly rejected the null hypothesis.

5.29 (a) H0 : µdiff = 0. HA : µdiff 6= 0.
T = −2.71. df = 5. 0.02 < p-value < 0.05.
Since p-value < 0.05, reject H0. The data pro-
vide strong evidence that the average number of
traffic accident related emergency room admis-
sions are different between Friday the 6th and
Friday the 13th. Furthermore, the data indicate
that the direction of that difference is that ac-
cidents are lower on Friday the 6th relative to
Friday the 13th. (b) (-6.49, -0.17). (c) This is
an observational study, not an experiment, so
we cannot so easily infer a causal intervention
implied by this statement. It is true that there
is a difference. However, for example, this does
not mean that a responsible adult going out on
Friday the 13th has a higher chance of harm than
on any other night.

5.31 (a) Chicken fed linseed weighed an aver-
age of 218.75 grams while those fed horsebean
weighed an average of 160.20 grams. Both dis-
tributions are relatively symmetric with no ap-
parent outliers. There is more variability in the
weights of chicken fed linseed. (b) H0 : µls =
µhb. HA : µls 6= µhb. We leave the conditions to
you to consider. T = 3.02, df = min(11, 9) = 9
→ 0.01 < p-value < 0.02. Since p-value < 0.05,
reject H0. The data provide strong evidence
that there is a significant difference between the
average weights of chickens that were fed lin-
seed and horsebean. (c) Type 1 Error, since we
rejected H0. (d) Yes, since p-value > 0.01, we
would have failed to reject H0.

5.33 H0 : µC = µS . HA : µC 6= µS . T = 3.27,
df = 11→ p-value < 0.01. Since p-value < 0.05,
reject H0. The data provide strong evidence
that the average weight of chickens that were
fed casein is different than the average weight
of chickens that were fed soybean (with weights
from casein being higher). Since this is a ran-
domized experiment, the observed difference can
be attributed to the diet.



418 APPENDIX A. END OF CHAPTER EXERCISE SOLUTIONS

5.35 H0 : µT = µC . HA : µT 6= µC . T = 2.24,
df = 21 → 0.02 < p-value < 0.05. Since p-
value < 0.05, reject H0. The data provide strong
evidence that the average food consumption by
the patients in the treatment and control groups
are different. Furthermore, the data indicate pa-
tients in the distracted eating (treatment) group
consume more food than patients in the control
group.

5.37 Let µdiff = µpre − µpost. H0 : µdiff = 0:
Treatment has no effect. HA : µdiff > 0: Treat-
ment is effective in reducing P.D.T. scores, the
average pre-treatment score is higher than the
average post-treatment score. Note that the re-
ported values are pre minus post, so we are look-
ing for a positive difference, which would corre-
spond to a reduction in the P.D.T. score. Condi-
tions are checked as follows. Independence: The
subjects are randomly assigned to treatments,
so the patients in each group are independent.
All three sample sizes are smaller than 30, so
we use t-tests. Distributions of differences are
somewhat skewed. The sample sizes are small,
so we cannot reliably relax this assumption. (We
will proceed, but we would not report the re-
sults of this specific analysis, at least for treat-
ment group 1.) For all three groups: df = 13.
T1 = 1.89 (0.025 < p-value < 0.05), T2 = 1.35
(p-value = 0.10), T3 = −1.40 (p-value > 0.10).
The only significant test reduction is found in
Treatment 1, however, we had earlier noted that
this result might not be reliable due to the skew
in the distribution. Note that the calculation
of the p-value for Treatment 3 was unnecessary:
the sample mean indicated a increase in P.D.T.
scores under this treatment (as opposed to a de-
crease, which was the result of interest). That
is, we could tell without formally completing the
hypothesis test that the p-value would be large
for this treatment group.

5.39 Difference we care about: 40. Single tail
of 90%: 1.28 × SE. Rejection region bounds:
±1.96 × SE (if 5% significance level). Setting

3.24 × SE = 40, subbing in SE =
√

942

n
+ 942

n
,

and solving for the sample size n gives 116 plots

of land for each fertilizer.

5.41 Alternative.

5.43 H0: µ1 = µ2 = · · · = µ6. HA: The aver-
age weight varies across some (or all) groups.
Independence: Chicks are randomly assigned
to feed types (presumably kept separate from
one another), therefore independence of obser-
vations is reasonable. Approx. normal: the
distributions of weights within each feed type
appear to be fairly symmetric. Constant vari-
ance: Based on the side-by-side box plots, the
constant variance assumption appears to be rea-
sonable. There are differences in the actual com-
puted standard deviations, but these might be
due to chance as these are quite small samples.
F5,65 = 15.36 and the p-value is approximately
0. With such a small p-value, we reject H0. The
data provide convincing evidence that the aver-
age weight of chicks varies across some (or all)
feed supplement groups.

5.45 (a) H0: The population mean of MET
for each group is equal to the others. HA: At
least one pair of means is different. (b) Inde-
pendence: We don’t have any information on
how the data were collected, so we cannot assess
independence. To proceed, we must assume the
subjects in each group are independent. In prac-
tice, we would inquire for more details. Approx.
normal: The data are bound below by zero
and the standard deviations are larger than the
means, indicating very strong skew. However,
since the sample sizes are extremely large, even
extreme skew is acceptable. Constant variance:
This condition is sufficiently met, as the stan-
dard deviations are reasonably consistent across
groups. (c) See below, with the last column
omitted:

Df Sum Sq Mean Sq F value

coffee 4 10508 2627 5.2
Residuals 50734 25564819 504
Total 50738 25575327

(d) Since p-value is very small, reject H0. The
data provide convincing evidence that the av-
erage MET differs between at least one pair of
groups.
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5.47 (a) H0: Average GPA is the same for all
majors. HA: At least one pair of means are dif-
ferent. (b) Since p-value > 0.05, fail to reject
H0. The data do not provide convincing evi-
dence of a difference between the average GPAs
across three groups of majors. (c) The total de-
grees of freedom is 195 + 2 = 197, so the sample
size is 197 + 1 = 198.

5.49 (a) False. As the number of groups in-
creases, so does the number of comparisons and
hence the modified significance level decreases.
(b) True. (c) True. (d) False. We need obser-
vations to be independent regardless of sample
size.

5.51 (a) H0: Average score difference is the
same for all treatments. HA: At least one pair
of means are different. (b) We should check
conditions. If we look back to the earlier ex-
ercise, we will see that the patients were ran-
domized, so independence is satisfied. There
are some minor concerns about skew, especially
with the third group, though this may be ac-

ceptable. The standard deviations across the
groups are reasonably similar. Since the p-value
is less than 0.05, reject H0. The data provide
convincing evidence of a difference between the
average reduction in score among treatments.
(c) We determined that at least two means
are different in part (b), so we now conduct
K = 3 × 2/2 = 3 pairwise t-tests that each use
α = 0.05/3 = 0.0167 for a significance level. Use
the following hypotheses for each pairwise test.
H0: The two means are equal. HA: The two
means are different. The sample sizes are equal
and we use the pooled SD, so we can compute
SE = 3.7 with the pooled df = 39. The p-value
only for Trmt 1 vs. Trmt 3 may be statistically
significant: 0.01 < p-value < 0.02. Since we
cannot tell, we should use a computer to get the
p-value, 0.015, which is statistically significant
for the adjusted significance level. That is, we
have identified Treatment 1 and Treatment 3 as
having different effects. Checking the other two
comparisons, the differences are not statistically
significant.

6 Inference for categorical data

6.1 (a) False. Doesn’t satisfy success-failure
condition. (b) True. The success-failure condi-
tion is not satisfied. In most samples we would
expect p̂ to be close to 0.08, the true popula-
tion proportion. While p̂ can be much above
0.08, it is bound below by 0, suggesting it would
take on a right skewed shape. Plotting the sam-
pling distribution would confirm this suspicion.
(c) False. SEp̂ = 0.0243, and p̂ = 0.12 is only
0.12−0.08

0.0243
= 1.65 SEs away from the mean, which

would not be considered unusual. (d) True.
p̂ = 0.12 is 2.32 standard errors away from
the mean, which is often considered unusual.
(e) False. Decreases the SE by a factor of 1/

√
2.

6.3 (a) True. See the reasoning of 6.1(b).
(b) True. We take the square root of the sample

size in the SE formula. (c) True. The inde-
pendence and success-failure conditions are sat-
isfied. (d) True. The independence and success-
failure conditions are satisfied.

6.5 (a) False. A confidence interval is con-
structed to estimate the population proportion,
not the sample proportion. (b) True. 95% CI:
70% ± 8%. (c) True. By the definition of
the confidence level. (d) True. Quadrupling the
sample size decreases the SE and ME by a fac-
tor of 1/

√
4. (e) True. The 95% CI is entirely

above 50%.

6.7 With a random sample from < 10% of
the population, independence is satisfied. The
success-failure condition is also satisfied. ME =

z?
√

p̂(1−p̂)
n

= 1.96
√

0.56×0.44
600

= 0.0397 ≈ 4%
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6.9 (a) Proportion of graduates from this uni-
versity who found a job within one year of
graduating. p̂ = 348/400 = 0.87. (b) This
is a random sample from less than 10% of
the population, so the observations are inde-
pendent. Success-failure condition is satisfied:
348 successes, 52 failures, both well above 10.
(c) (0.8371, 0.9029). We are 95% confident that
approximately 84% to 90% of graduates from
this university found a job within one year of
completing their undergraduate degree. (d) 95%
of such random samples would produce a 95%
confidence interval that includes the true pro-
portion of students at this university who found
a job within one year of graduating from college.
(e) (0.8267, 0.9133). Similar interpretation as
before. (f) 99% CI is wider, as we are more
confident that the true proportion is within the
interval and so need to cover a wider range.

6.11 (a) No. The sample only represents stu-
dents who took the SAT, and this was also an
online survey. (b) (0.5289, 0.5711). We are 90%
confident that 53% to 57% of high school seniors
who took the SAT are fairly certain that they
will participate in a study abroad program in
college. (c) 90% of such random samples would
produce a 90% confidence interval that includes
the true proportion. (d) Yes. The interval lies
entirely above 50%.

6.13 (a) This is an appropriate setting for a
hypothesis test. H0 : p = 0.50. HA : p > 0.50.
Both independence and the success-failure con-
dition are satisfied. Z = 1.12 → p-value =
0.1314. Since the p-value > α = 0.05, we fail to
reject H0. The data do not provide strong ev-
idence that more than half of all Independents
oppose the public option plan. (b) Yes, since we
did not reject H0 in part (a).

6.15 (a) H0 : p = 0.38. HA : p 6= 0.38. In-
dependence (random sample, < 10% of popula-
tion) and the success-failure condition are sat-
isfied. Z = −20.5 → p-value ≈ 0. Since the
p-value is very small, we reject H0. The data
provide strong evidence that the proportion of
Americans who only use their cell phones to ac-

cess the internet is different than the Chinese
proportion of 38%, and the data indicate that
the proportion is lower in the US. (b) If in fact
38% of Americans used their cell phones as a
primary access point to the internet, the prob-
ability of obtaining a random sample of 2,254
Americans where 17% or less or 59% or more use
their only their cell phones to access the internet
would be approximately 0. (c) (0.1545, 0.1855).
We are 95% confident that approximately 15.5%
to 18.6% of all Americans primarily use their cell
phones to browse the internet.

6.17 (a) H0 : p = 0.5. HA : p > 0.5. Indepen-
dence (random sample, < 10% of population)
is satisfied, as is the success-failure conditions
(using p0 = 0.5, we expect 40 successes and 40
failures). Z = 2.91 → p-value = 0.0018. Since
the p-value < 0.05, we reject the null hypothe-
sis. The data provide strong evidence that the
rate of correctly identifying a soda for these peo-
ple is significantly better than just by random
guessing. (b) If in fact people cannot tell the dif-
ference between diet and regular soda and they
randomly guess, the probability of getting a ran-
dom sample of 80 people where 53 or more iden-
tify a soda correctly would be 0.0018.

6.19 (a) Independence is satisfied (random
sample from < 10% of the population), as is
the success-failure condition (40 smokers, 160
non-smokers). The 95% CI: (0.145, 0.255). We
are 95% confident that 14.5% to 25.5% of all
students at this university smoke. (b) We want
z?SE to be no larger than 0.02 for a 95% con-
fidence level. We use z? = 1.96 and plug in the
point estimate p̂ = 0.2 within the SE formula:
1.96

√
0.2(1− 0.2)/n ≤ 0.02. The sample size n

should be at least 1,537.

6.21 The margin of error, which is computed
as z?SE, must be smaller than 0.01 for a
90% confidence level. We use z? = 1.65 for
a 90% confidence level, and we can use the
point estimate p̂ = 0.52 in the formula for SE.
1.65

√
0.52(1− 0.52)/n ≤ 0.01. Therefore, the

sample size n must be at least 6,796.
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6.23 This is not a randomized experiment, and
it is unclear whether people would be affected
by the behavior of their peers. That is, indepen-
dence may not hold. Additionally, there are only
5 interventions under the provocative scenario,
so the success-failure condition does not hold.
Even if we consider a hypothesis test where we
pool the proportions, the success-failure condi-
tion will not be satisfied. Since one condition is
questionable and the other is not satisfied, the
difference in sample proportions will not follow
a nearly normal distribution.

6.25 (a) False. The entire confidence interval is
above 0. (b) True. (c) True. (d) True. (e) False.
It is simply the negated and reordered values:
(-0.06,-0.02).

6.27 (a) (0.23, 0.33). We are 95% confident
that the proportion of Democrats who support
the plan is 23% to 33% higher than the propor-
tion of Independents who do. (b) True.

6.29 (a) College grads: 23.7%. Non-college
grads: 33.7%. (b) Let pCG and pNCG represent
the proportion of college graduates and non-
college graduates who responded “do not know”.
H0 : pCG = pNCG. HA : pCG 6= pNCG. Inde-
pendence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 235/827 = 0.284), is also satis-
fied. Z = −3.18 → p-value = 0.0014. Since the
p-value is very small, we reject H0. The data
provide strong evidence that the proportion of
college graduates who do not have an opinion
on this issue is different than that of non-college
graduates. The data also indicate that fewer
college grads say they “do not know” than non-
college grads (i.e. the data indicate the direction
after we reject H0).

6.31 (a) College grads: 35.2%. Non-college
grads: 33.9%. (b) Let pCG and pNCG rep-
resent the proportion of college graduates and
non-college grads who support offshore drilling.
H0 : pCG = pNCG. HA : pCG 6= pNCG. In-
dependence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 286/827 = 0.346), is also satis-
fied. Z = 0.39 → p-value = 0.6966. Since the
p-value > α (0.05), we fail to reject H0. The
data do not provide strong evidence of a differ-

ence between the proportions of college gradu-
ates and non-college graduates who support off-
shore drilling in California.

6.33 Subscript C means control group. Sub-
script T means truck drivers. H0 : pC =
pT . HA : pC 6= pT . Independence is satis-
fied (random samples, < 10% of the popula-
tion), as is the success-failure condition, which
we would check using the pooled proportion
(p̂ = 70/495 = 0.141). Z = −1.65 → p-value
= 0.0989. Since the p-value is high (default to
α = 0.05), we fail to reject H0. The data do not
provide strong evidence that the rates of sleep
deprivation are different for non-transportation
workers and truck drivers.

6.35 (a) Summary of the study:

Virol. failure
Yes No Total

Treatment
Nevaripine 26 94 120
Lopinavir 10 110 120
Total 36 204 240

(b) H0 : pN = pL. There is no difference in vi-
rologic failure rates between the Nevaripine and
Lopinavir groups. HA : pN 6= pL. There is
some difference in virologic failure rates between
the Nevaripine and Lopinavir groups. (c) Ran-
dom assignment was used, so the observations in
each group are independent. If the patients in
the study are representative of those in the gen-
eral population (something impossible to check
with the given information), then we can also
confidently generalize the findings to the pop-
ulation. The success-failure condition, which
we would check using the pooled proportion
(p̂ = 36/240 = 0.15), is satisfied. Z = 2.89→ p-
value = 0.0039. Since the p-value is low, we re-
ject H0. There is strong evidence of a difference
in virologic failure rates between the Nevarip-
ine and Lopinavir groups do not appear to be
independent.

6.37 No. The samples at the beginning and
at the end of the semester are not independent
since the survey is conducted on the same stu-
dents.

6.39 (a) False. The chi-square distribution
has one parameter called degrees of freedom.
(b) True. (c) True. (d) False. As the degrees
of freedom increases, the shape of the chi-square
distribution becomes more symmetric.
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6.41 (a) H0: The distribution of the format
of the book used by the students follows the
professor’s predictions. HA: The distribution
of the format of the book used by the stu-
dents does not follow the professor’s predictions.
(b) Ehard copy = 126 × 0.60 = 75.6. Eprint =
126× 0.25 = 31.5. Eonline = 126× 0.15 = 18.9.
(c) Independence: The sample is not random.
However, if the professor has reason to believe
that the proportions are stable from one term
to the next and students are not affecting each
other’s study habits, independence is probably
reasonable. Sample size: All expected counts
are at least 5. (d) χ2 = 2.32, df = 2, p-value
> 0.3. (e) Since the p-value is large, we fail to
reject H0. The data do not provide strong evi-
dence indicating the professor’s predictions were
statistically inaccurate.

6.43 Use a chi-squared goodness of fit test. H0:
Each option is equally likely. HA: Some op-
tions are preferred over others. Total sample
size: 99. Expected counts: (1/3) * 99 = 33 for
each option. These are all above 5, so condi-
tions are satisfied. df = 3 − 1 = 2 and χ2 =
(43−33)2

33
+ (21−33)2

33
+ (35−33)2

33
= 7.52 → 0.02 <

p-value < 0.05. Since the p-value is less than
5%, we reject H0. The data provide convincing
evidence that some options are preferred over
others.

6.45 (a) Two-way table:

Quit
Treatment Yes No Total
Patch + support group 40 110 150
Only patch 30 120 150
Total 70 230 300

(b-i) Erow1,col1 = (row 1 total)×(col 1 total)
table total

= 35.
This is lower than the observed value.
(b-ii) Erow2,col2 = (row 2 total)×(col 2 total)

table total
=

115. This is lower than the observed value.

6.47 H0: The opinion of college grads and non-
grads is not different on the topic of drilling for
oil and natural gas off the coast of California.
HA: Opinions regarding the drilling for oil and
natural gas off the coast of California has an
association with earning a college degree.

Erow 1,col 1 = 151.5 Erow 1,col 2 = 134.5

Erow 2,col 1 = 162.1 Erow 2,col 2 = 143.9

Erow 3,col 1 = 124.5 Erow 3,col 2 = 110.5

Independence: The samples are both random,
unrelated, and from less than 10% of the pop-
ulation, so independence between observations
is reasonable. Sample size: All expected counts
are at least 5. χ2 = 11.47, df = 2 → 0.001 < p-
value < 0.005. Since the p-value < α, we reject
H0. There is strong evidence that there is an as-
sociation between support for off-shore drilling
and having a college degree.

6.49 (a) H0: The age of Los Angeles residents is
independent of shipping carrier preference vari-
able. HA: The age of Los Angeles residents is
associated with the shipping carrier preference
variable. (b) The conditions are not satisfied
since some expected counts are below 5.

6.51 No. For a confidence interval, we check
the success-failure condition using the data, and
there are only 9 respondents who said bullying
is no problem at all.

6.53 (a) H0 : p = 0.69. HA : p 6= 0.69.
(b) p̂ = 17

30
= 0.57. (c) The success-failure condi-

tion is not satisfied; note that it is appropriate
to use the null value (p0 = 0.69) to compute
the expected number of successes and failures.
(d) Answers may vary. Each student can be
represented with a card. Take 100 cards, 69
black cards representing those who follow the
news about Egypt and 31 red cards represent-
ing those who do not. Shuffle the cards and
draw with replacement (shuffling each time in
between draws) 30 cards representing the 30
high school students. Calculate the proportion
of black cards in this sample, p̂sim, i.e. the pro-
portion of those who follow the news in the sim-
ulation. Repeat this many times (e.g. 10,000
times) and plot the resulting sample propor-
tions. The p-value will be two times the propor-
tion of simulations where p̂sim ≤ 0.57. (Note:
we would generally use a computer to perform
these simulations.) (e) The p-value is about
0.001 + 0.005 + 0.020 + 0.035 + 0.075 = 0.136,
meaning the two-sided p-value is about 0.272.
Your p-value may vary slightly since it is based
on a visual estimate. Since the p-value is greater
than 0.05, we fail to reject H0. The data do
not provide strong evidence that the proportion
of high school students who followed the news
about Egypt is different than the proportion of
American adults who did.
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6.55 The subscript pr corresponds to provoca-
tive and con to conservative. (a)H0 : ppr = pcon.
HA : ppr 6= pcon. (b) -0.35. (c) The left tail
for the p-value is calculated by adding up the
two left bins: 0.005 + 0.015 = 0.02. Doubling
the one tail, the p-value is 0.04. (Students may

have approximate results, and a small number
of students may have a p-value of about 0.05.)
Since the p-value is low, we reject H0. The data
provide strong evidence that people react differ-
ently under the two scenarios.

7 Introduction to linear regression

7.1 (a) The residual plot will show randomly
distributed residuals around 0. The variance is
also approximately constant. (b) The residuals
will show a fan shape, with higher variability for
smaller x. There will also be many points on the
right above the line. There is trouble with the
model being fit here.

7.3 (a) Strong relationship, but a straight line
would not fit the data. (b) Strong relationship,
and a linear fit would be reasonable. (c) Weak
relationship, and trying a linear fit would be
reasonable. (d) Moderate relationship, but a
straight line would not fit the data. (e) Strong
relationship, and a linear fit would be reason-
able. (f) Weak relationship, and trying a linear
fit would be reasonable.

7.5 (a) Exam 2 since there is less of a scatter in
the plot of final exam grade versus exam 2. No-
tice that the relationship between Exam 1 and
the Final Exam appears to be slightly nonlinear.
(b) Exam 2 and the final are relatively close to
each other chronologically, or Exam 2 may be
cumulative so has greater similarities in mate-
rial to the final exam. Answers may vary for
part (b).

7.7 (a) r = −0.7 → (4). (b) r = 0.45 → (3).
(c) r = 0.06 → (1). (d) r = 0.92 → (2).

7.9 (a) True. (b) False, correlation is a mea-
sure of the linear association between any two
numerical variables.

7.11 (a) The relationship is positive, weak, and
possibly linear. However, there do appear to
be some anomalous observations along the left
where several students have the same height
that is notably far from the cloud of the other
points. Additionally, there are many students
who appear not to have driven a car, and they
are represented by a set of points along the bot-
tom of the scatterplot. (b) There is no obvious
explanation why simply being tall should lead a

person to drive faster. However, one confound-
ing factor is gender. Males tend to be taller
than females on average, and personal experi-
ences (anecdotal) may suggest they drive faster.
If we were to follow-up on this suspicion, we
would find that sociological studies confirm this
suspicion. (c) Males are taller on average and
they drive faster. The gender variable is indeed
an important confounding variable.

7.13 (a) There is a somewhat weak, positive,
possibly linear relationship between the distance
traveled and travel time. There is clustering
near the lower left corner that we should take
special note of. (b) Changing the units will not
change the form, direction or strength of the re-
lationship between the two variables. If longer
distances measured in miles are associated with
longer travel time measured in minutes, longer
distances measured in kilometers will be associ-
ated with longer travel time measured in hours.
(c) Changing units doesn’t affect correlation:
r = 0.636.

7.15 (a) There is a moderate, positive, and
linear relationship between shoulder girth and
height. (b) Changing the units, even if just for
one of the variables, will not change the form,
direction or strength of the relationship between
the two variables.

7.17 In each part, we can write the husband
ages as a linear function of the wife ages.
(a) ageH = ageW + 3.
(b) ageH = ageW − 2.
(c) ageH = 2× ageW .
Since the slopes are positive and these are per-
fect linear relationships, the correlation will be
exactly 1 in all three parts. An alternative way
to gain insight into this solution is to create a
mock data set, e.g. 5 women aged 26, 27, 28,
29, and 30, then find the husband ages for each
wife in each part and create a scatterplot.
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7.19 Correlation: no units. Intercept: kg.
Slope: kg/cm.

7.21 Over-estimate. Since the residual is cal-
culated as observed − predicted, a negative
residual means that the predicted value is higher
than the observed value.

7.23 (a) There is a positive, very strong, linear
association between the number of tourists and
spending. (b) Explanatory: number of tourists
(in thousands). Response: spending (in millions
of US dollars). (c) We can predict spending for a
given number of tourists using a regression line.
This may be useful information for determin-
ing how much the country may want to spend
in advertising abroad, or to forecast expected
revenues from tourism. (d) Even though the re-
lationship appears linear in the scatterplot, the
residual plot actually shows a nonlinear relation-
ship. This is not a contradiction: residual plots
can show divergences from linearity that can be
difficult to see in a scatterplot. A simple linear
model is inadequate for modeling these data. It
is also important to consider that these data are
observed sequentially, which means there may
be a hidden structure not evident in the current
plots but that is important to consider.

7.25 (a) First calculate the slope: b1 = R ×
sy/sx = 0.636 × 113/99 = 0.726. Next, make
use of the fact that the regression line passes
through the point (x̄, ȳ): ȳ = b0 + b1 × x̄. Plug
in x̄, ȳ, and b1, and solve for b0: 51. Solution:̂travel time = 51 + 0.726 × distance. (b) b1:
For each additional mile in distance, the model
predicts an additional 0.726 minutes in travel
time. b0: When the distance traveled is 0 miles,
the travel time is expected to be 51 minutes. It
does not make sense to have a travel distance
of 0 miles in this context. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) R2 = 0.6362 = 0.40.
About 40% of the variability in travel time is
accounted for by the model, i.e. explained by
the distance traveled. (d) ̂travel time = 51 +
0.726 × distance = 51 + 0.726 × 103 ≈ 126
minutes. (Note: we should be cautious in our
predictions with this model since we have not
yet evaluated whether it is a well-fit model.)
(e) ei = yi − ŷi = 168 − 126 = 42 minutes. A

positive residual means that the model underes-
timates the travel time. (f) No, this calculation
would require extrapolation.

7.27 There is an upwards trend. However, the
variability is higher for higher calorie counts,
and it looks like there might be two clusters of
observations above and below the line on the
right, so we should be cautious about fitting a
linear model to these data.

7.29 (a) ̂murder = −29.901+2.559×poverty%
(b) Expected murder rate in metropolitan ar-
eas with no poverty is -29.901 per million. This
is obviously not a meaningful value, it just
serves to adjust the height of the regression line.
(c) For each additional percentage increase in
poverty, we expect murders per million to be
higher on average by 2.559. (d) Poverty level ex-
plains 70.52% of the variability in murder rates
in metropolitan areas. (e)

√
0.7052 = 0.8398

7.31 (a) There is an outlier in the bottom right.
Since it is far from the center of the data, it is
a point with high leverage. It is also an influ-
ential point since, without that observation, the
regression line would have a very different slope.
(b) There is an outlier in the bottom right. Since
it is far from the center of the data, it is a point
with high leverage. However, it does not appear
to be affecting the line much, so it is not an in-
fluential point.
(c) The observation is in the center of the data
(in the x-axis direction), so this point does not
have high leverage. This means the point won’t
have much effect on the slope of the line and so
is not an influential point.

7.33 (a) There is a negative, moderate-to-
strong, somewhat linear relationship between
percent of families who own their home and the
percent of the population living in urban areas
in 2010. There is one outlier: a state where
100% of the population is urban. The variability
in the percent of homeownership also increases
as we move from left to right in the plot. (b) The
outlier is located in the bottom right corner, hor-
izontally far from the center of the other points,
so it is a point with high leverage. It is an influ-
ential point since excluding this point from the
analysis would greatly affect the slope of the re-
gression line.



425

7.35 (a) The relationship is positive, moderate-
to-strong, and linear. There are a few out-
liers but no points that appear to be influen-
tial. (b) ̂weight = −105.0113 + 1.0176×height.
Slope: For each additional centimeter in height,
the model predicts the average weight to be
1.0176 additional kilograms (about 2.2 pounds).
Intercept: People who are 0 centimeters tall are
expected to weigh -105.0113 kilograms. This
is obviously not possible. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) H0: The true slope
coefficient of height is zero (β1 = 0). HA: The
true slope coefficient of height is greater than
zero (β1 > 0). A two-sided test would also be
acceptable for this application. The p-value for
the two-sided alternative hypothesis (β1 6= 0)
is incredibly small, so the p-value for the one-
sided hypothesis will be even smaller. That
is, we reject H0. The data provide convincing
evidence that height and weight are positively
correlated. The true slope parameter is indeed
greater than 0. (d) R2 = 0.722 = 0.52. Approx-
imately 52% of the variability in weight can be
explained by the height of individuals.

7.37 (a) H0: β1 = 0. HA: β1 > 0. A two-sided
test would also be acceptable for this applica-
tion. The p-value, as reported in the table, is
incredibly small. Thus, for a one-sided test, the
p-value will also be incredibly small, and we re-
ject H0. The data provide convincing evidence
that wives’ and husbands’ heights are positively
correlated. (b) ̂heightW = 43.5755 + 0.2863 ×
heightH . (c) Slope: For each additional inch

in husband’s height, the average wife’s height is
expected to be an additional 0.2863 inches on
average. Intercept: Men who are 0 inches tall
are expected to have wives who are, on average,
43.5755 inches tall. The intercept here is mean-
ingless, and it serves only to adjust the height
of the line. (d) The slope is positive, so r must
also be positive. r =

√
0.09 = 0.30. (e) 63.2612.

Since R2 is low, the prediction based on this re-
gression model is not very reliable. (f) No, we
should avoid extrapolating.

7.39 (a) r =
√

0.28 ≈ −0.53. We know the
correlation is negative due to the negative as-
sociation shown in the scatterplot. (b) The
residuals appear to be fan shaped, indicating
non-constant variance. Therefore a simple least
squares fit is not appropriate for these data.

7.41 (a) H0 : β1 = 0;HA : β1 6= 0 (b) The
p-value for this test is approximately 0, there-
fore we reject H0. The data provide convinc-
ing evidence that poverty percentage is a sig-
nificant predictor of murder rate. (c) n =
20, df = 18, T ∗18 = 2.10; 2.559 ± 2.10 × 0.390 =
(1.74, 3.378); For each percentage point poverty
is higher, murder rate is expected to be higher
on average by 1.74 to 3.378 per million. (d) Yes,
we rejected H0 and the confidence interval does
not include 0.

7.43 This is a one-sided test, so the p-value
should be half of the p-value given in the re-
gression table, which will be approximately 0.
Therefore the data provide convincing evidence
that poverty percentage is positively associated
with murder rate.

8 Multiple and logistic regression

8.1 (a) ̂baby weight = 123.05 − 8.94 × smoke
(b) The estimated body weight of babies born
to smoking mothers is 8.94 ounces lower than
babies born to non-smoking mothers. Smoker:
123.05− 8.94× 1 = 114.11 ounces. Non-smoker:
123.05 − 8.94 × 0 = 123.05 ounces. (c) H0:
β1 = 0. HA: β1 6= 0. T = −8.65, and the
p-value is approximately 0. Since the p-value
is very small, we reject H0. The data provide
strong evidence that the true slope parameter is
different than 0 and that there is an association
between birth weight and smoking. Further-
more, having rejected H0, we can conclude that
smoking is associated with lower birth weights.

8.3 (a) ̂baby weight = −80.41 + 0.44 ×
gestation − 3.33 × parity − 0.01 × age +
1.15 × height + 0.05 × weight − 8.40 × smoke.
(b) βgestation: The model predicts a 0.44 ounce
increase in the birth weight of the baby for each
additional day of pregnancy, all else held con-
stant. βage: The model predicts a 0.01 ounce
decrease in the birth weight of the baby for each
additional year in mother’s age, all else held con-
stant. (c) Parity might be correlated with one
of the other variables in the model, which com-
plicates model estimation. (d) ̂baby weight =
120.58. e = 120 − 120.58 = −0.58. The
model over-predicts this baby’s birth weight.
(e) R2 = 0.2504. R2

adj = 0.2468.
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8.5 (a) (-0.32, 0.16). We are 95% confident that
male students on average have GPAs 0.32 points
lower to 0.16 points higher than females when
controlling for the other variables in the model.
(b) Yes, since the p-value is larger than 0.05 in
all cases (not including the intercept).

8.7 Remove age.

8.9 Based on the p-value alone, either gestation
or smoke should be added to the model first.
However, since the adjusted R2 for the model
with gestation is higher, it would be preferable
to add gestation in the first step of the forward-
selection algorithm. (Other explanations are
possible. For instance, it would be reasonable
to only use the adjusted R2.)

8.11 She should use p-value selection since she
is interested in finding out about significant pre-
dictors, not just optimizing predictions.

8.13 Nearly normal residuals: The normal
probability plot shows a nearly normal distri-
bution of the residuals, however, there are some
minor irregularities at the tails. With a data set
so large, these would not be a concern.
Constant variability of residuals: The scatter-
plot of the residuals versus the fitted values does
not show any overall structure. However, val-
ues that have very low or very high fitted val-
ues appear to also have somewhat larger out-
liers. In addition, the residuals do appear to
have constant variability between the two parity
and smoking status groups, though these items
are relatively minor.
Independent residuals: The scatterplot of resid-
uals versus the order of data collection shows a
random scatter, suggesting that there is no ap-
parent structures related to the order the data
were collected.
Linear relationships between the response vari-
able and numerical explanatory variables: The
residuals vs. height and weight of mother are
randomly distributed around 0. The residuals

vs. length of gestation plot also does not show
any clear or strong remaining structures, with
the possible exception of very short or long ges-
tations. The rest of the residuals do appear to
be randomly distributed around 0.
All concerns raised here are relatively mild.
There are some outliers, but there is so much
data that the influence of such observations will
be minor.

8.15 (a) There are a few potential outliers, e.g.
on the left in the total length variable, but
nothing that will be of serious concern in a data
set this large. (b) When coefficient estimates
are sensitive to which variables are included in
the model, this typically indicates that some
variables are collinear. For example, a pos-
sum’s gender may be related to its head length,
which would explain why the coefficient (and p-
value) for sex male changed when we removed
the head length variable. Likewise, a possum’s
skull width is likely to be related to its head
length, probably even much more closely related
than the head length was to gender.

8.17 (a) The logistic model relating p̂i to the

predictors may be written as log
(

p̂i
1−p̂i

)
=

33.5095 − 1.4207 × sex malei − 0.2787 ×
skull widthi+ 0.5687× total lengthi−1.8057×
tail lengthi. Only total length has a positive
association with a possum being from Victoria.
(b) p̂ = 0.0062. While the probability is very
near zero, we have not run diagnostics on the
model. We might also be a little skeptical that
the model will remain accurate for a possum
found in a US zoo. For example, perhaps the
zoo selected a possum with specific character-
istics but only looked in one region. On the
other hand, it is encouraging that the possum
was caught in the wild. (Answers regarding the
reliability of the model probability will vary.)


