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University of Western Australia.

We use a close connection between the theory of Markov fields and that of
log-linear interaction models for contingency tables to define and investigate a
new class of models for such tables, graphical models. These models are
hierarchical models that can be represented by a simple, undirected graph on as
many vertices as the dimension of the corresponding table. Further all these
models can be given an interpretation in terms of conditional independence and
the interpretation can be read directly off the graph in the form of a Markov
property. The class of graphical models contains that of decomposable models
and we give a simple criterion for decomposability of a given graphical model.
To some extent we discuss estimation problems and give suggestions for further
work.

0. Introduction and summary. In the present paper we shall utilize some close
connections between the theory of Markov fields and that of log-linear interaction
models to define a new class of models for multidimensional contingency tables:
graphical models. The graphical models have two important properties:

(i) they can be represented by an undirected, finite graph with as many vertices
as the table has dimensions;

(i) they can be interpreted in terms of conditional independence (in fact, a
Markov property) and the interpretation can be read directly off the graph.

This class of models is a proper subclass of the so-called hierarchical models, but
it strictly -contains the decomposable models (Goodman (1970, 1971), Haberman
(1970, 1974), Andersen (1974)). This implies that we can give a simple, visual
representation of any decomposable model, thus making the interpretation easy.

We also characterise those graphs that correspond to decomposable models, thus
giving an alternative to Goodman’s algorithm for checking decomposability of a
given hierarchical model: first, check whether it is graphical and then, if it is, check
whether the graph is decomposable, i.e., whether there are any cyclic subgraphs of
length > 4. .

In Section 1 we introduce some notation and define the various classes of models
for contingency tables. In Section 2 we review some basic elements of the theory of
Markov fields and Gibbs states. In Section 3 we draw together the results in these
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two sections, define the graphical models and discuss their interpretation. Section 4
contains the arguments needed to realise that all decomposable models are graphi-
cal and we also give the characterisation of decomposable graphs. Section 5 is
devoted to maximum likelihood estimation in decomposable models. Although this
is completely solved by Haberman (1974) we define an index directly interpretable
from the graph and show how these indices are the powers of the marginal counts
in the estimation formula. A combinatorial property of this index can also be used
as a characterisation of decomposable graphs. Section 6 contains a list of all
graphical models of dimension less than or equal to five together with their
interpretation and these are divided into decomposables and nondecomposables.
This is meant to both illustrate our theory and be an analogue of the tables in
Goodman (1974) with all hierarchical models of dimension less than or equal to
four together with an interpretation of the decomposables among them. Finally we
give some suggestions regarding the use of the models and some directions for
possible further work.

The present paper is almost without proofs. Most of our results are just
“translations” of results from other areas. It is somewhat technical to establish the
connection between graphical models and decomposable models. In fact, in our
opinion these results are of a purely graph theoretic nature and the proofs and
necessary formalism to derive the results can be found in Lauritzen, Speed and
Vijayan (1978).

1. Preliminaries. We shall discuss log-linear interaction models for con-
tingency tables. Since we want to use the analogies between the theory of Markov
fields and that of such models, it will be convenient to introduce a notation that
makes such analogies more apparent.

We shall consider a finite set C of classification criteria or factors. For each
y € C we let I be the set of levels of the criterion or factor y. The set of cells in
our table is the set I = I ¢/, and a particular cell will be denoted i = (i, vy €
C). A set of n objects is classified according to the criteria and we let the counts n(i)
be the number of objects in cell i.

For a C C, we consider the marginal counts n(i,). n(i,) is the number of objects
in the marginal cell i, = (i,, y € a) and is obtained as the sum of the n(i) for all
such i that agree with i, on the coordinates corresponding to a. In other words,
n(i,) are the counts in the marginal table, where objects only are classified
according to the criteria in a. Similarly we let P(i)[ P(i,)] denote the probability that
any given object belongs to the [marginal] cell i[i,].

We consider the classifications of the n objects as n independent observations of
the distribution P such that the distribution of the counts becomes a multinomial
distribution:

P{NG) = n(i)i € I} = ( (i) 1 € I)H,E,P(i)"(".
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The general log-linear interaction model involves specification of the above un-
known distribution P as follows: firstly we expand the logarithm of P as

logP(i) = ;¢ c&,(i,):

where £, are functions of i that only depend on i via the coordinates in a, i.e.,
through i,. If a = &, £, is the constant vector.

Such an expansion can be made for any P with P(i) > O for all i € I. If we are
interested in having a one-to-one correspondence between the system of functions
{&, a C C} and P, we have to introduce standardising constraints as, e.g.,

VbCa: Z(i’_ . ,;_,b)g,(i;) =0 forall ib’

i.e., that summation over any factor gives a zero. This is all well known and
standard although the notation is slightly unusual.

The functions £, are called the interactions among the factors in a. If |a| = 1 we
call § the main effect, if |a| =2 a first-order interaction and, in general, if
|a| = m, &, is an interaction of order m — 1. A general log-linear interaction model
involves specifying certain of these interactions to vanish and letting the remaining
interactions be arbitrary and unknown. It is usually convenient to work with a
smaller class of models, the hierarchical models.

A hierarchical model is an interaction model where the specifications of vanish-
ing interactions satisfy the following property: if £, is specified to vanish and b D a
then &, is specified to vanish. In other words, if there is no interaction among factors
in a then there is no interaction of higher order involving all the factors in a.

As is easily seen and well known, a hierarchical model can be specified via a
so-called generating class being a set C of pair-wise incomparable (w.r.t. inclusion)
subsets of C to be interpreted as the maximal sets of permissible interactions, i.e.,

¢, = 0iff there is no c € @ witha C c.

A probability P belonging to a hierarchical model with generating class C is
uniquely determined by the marginal probabilities given by the elements of ©. The
maximum likelihood estimate of P is obtained by equating these marginal probabil-
ities to the marginal sample proportions.

A certain subclass of hierarchical models is of special interest: the decomposable
models, introduced by Goodman (1970, 1971) and later defined formally by Haber-
man (1970, 1974). Following Haberman, a generating class is decomposable if either
it has only one element or if it can be partitioned into generating classes @ and B
with@ N B =, C =@ U B and such that

(Useea) N (Upegb) = a* N b*

for some a* € @, b* € B . A slightly different definition was given by Lauritzen,
Speed and Vijayan (1978) (henceforth referred to as LSV) but it is shown in the
same paper that the definitions are equivalent.
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As shown by Haberman (1970) these models have two fundamental properties

(i) the problem of maximum likelihood estimation has an explicit solution;
(ii) the models can be interpreted in terms of conditional independence, inde-
pendence and equiprobability.

The basic idea in our work is that such an interpretation is most directly
formulated as a Markov property. Goodman (1970), in fact, uses the terminology
“models of Markov type” for decomposable models.

This leads us to consider Markov fields on finite graphs and from these
considerations it turns out that it is natural to define a class of models, graphical
models whose interpretation most elegantly is given as a Markov property of a
certain random field associated with the model.

2. Markov fields and Gibbs states. In the theory of Markov fields, see, e.g.,
Kemeny, Snell and Knapp (1976), we operate with a set I' of sites and here we
assume I' to be finite. I" will correspond to the set of factors C. At each site y €T
there is a finite set I, of elementary states. The set I =1l .rI, is the set of
configurations. A given configuration is denoted by i = (i,, y € I'). Further there is
an undirected graph I’ on T, i.e., a pair I’ = (V(I'), E(I')) consisting of the vertex set
V(') =T and edge set E(I'), where E(I') is a set of unordered pairs of distinct
elements of I'. We say that a and B8 are adjacent or neighbours and write a ~ B iff
(a, B} € E(T).

If a C T, the boundary of a, da, is the set of vertices in I" \ a that are adjacent to
some vertex in a. The closure of a is a U da and is denoted by a. When no
confusion is possible we write da, & instead of d{a}, {a}. A complete subset is a
subset a C I" where all elements are mutual neighbours. A cliqgue is a maximal
(w.r.t. inclusion) complete subset.

We now consider a probability P on I with P(i) > O for all i € I and the random
variables defined by coordinate projections: :

Xy(i) = iy’ Y erl
and
X,(i) =i, foraCT, a#*J.

The random field (X,, y €T) is said to be Markov w.r.t. P and T (or P is Markov
w.r.t. I) if one of the following four equivalent properties hold:

() for ally €T, X, and Xt.; are conditionally independent given X, .

(i) for all @, B €T with a < B, X, and X, are conditionally independent given
XT\(a, 8)5

(iii) for all @ C T, X, and X|.; are conditionally independent given X,,;

(iv) if two disjoint subsets a C I and b C I separated by a subset d C I’ in the
sense that all paths from a to b in T’ go via 4, then X, and X, are conditionally
independent given X,.
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That these four conditions in fact are equivalent for a probability with P(i) > 0
is more or less well known, see, e.g., Pitman (1976) or Kemeny, Snell and Knapp
(1976). It can be proved with quite elementary methods.

A potential is a real-valued function ® on I of the form

®(i) = 2,cr & (L)
where the functions &, depend on i through i, only and are called the interaction
potentials. In fact, any real-valued function is a potential, see the remarks in the
previous section, so this notion first gets interesting when we make restrictions on
the £, - functions.
A probability P on I is called a Gibbs state with potential ® if

P(i) = €%,

Similarly, any probability on I with P(i) > 0 for all i is a Gibbs state (with
potential ®(i) = log P(i)). @ is called a nearest-neighbour potential if it is built up
from interactions only among mutual neighbours, i.e., if §, = 0 if not all vertices in
a are mutual neighbours, i.e., if @ is not a complete subset of T. P is called a
nearest-neighbour Gibbs state iff P is a Gibbs state with potential ®, where @ is a
nearest-neighbour potential.

One of the most basic results about Markov fields and nearest-neighbour Gibbs
states asserts that, in fact, the two notions are identical: P is a nearest-neighbour
Gibbs state if and only if the corresponding random field is Markov. A proof of this
result can be found many places. In the case I, = I, there is, e.g,, a proof in
Kemeny, Snell and Knapp (1976), and the method of proof there easily extends to
the case with I, depending on v, see, e.g., Pitman (1976) or Speed (1976).

This theorem is in fact the key to our results: it establishes a connection between
certain linear restrictions on the logarithm of a probability (being n.-n.-Gibbs)
and a Markov property (an interpretation in terms of conditional independence).
What remains to be done is to introduce the graphs in the contingency table
framework.

3. Graphical models. Let us return to the contingency table set-up. Assume
that we have given a graph C on our set of factors C, specified by the vertex set
V(C) = C and edge set E(C). Let C be the cliques of C, i.e., the maximal complete
subsets. The graphical model given by C is the hierarchical model with generating
class . Note that C also uniquely defines the graph C by a ~ 8 iff 3¢ € € such
that {a, B} C c. In that sense our graph C is just another representation of the
generating class C.

Let us examine the restrictions on our interactions given by this generating class.
By the definition of a hierarchical model we have &, = O unless a is contained in a
maximal complete subset, i.e., unless a is a complete subset. In other words, the set of
probabilities P in our model is exactly the set of nearest-neighbour Gibbs states
corresponding to C.
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Consequently, by the fundamental theorem in the previous section, we have that
the probabilities P, contained in our model are exactly those making (X, y € C) a
Markov field. 1t is now clear that our model is given by conditional independence
constraints involved in the four equivalent formulations of the Markov property. It
is thus clear that if two sets of factors are in different connected components of the
graph, they are independent. If two factors are not neighbours, they are condition-
ally independent given the other factors. If two sets of factors a and b are separated
by a set of factors d, they are conditionally independent given those in d, etc.

We should like to point out, that not all hierarchical models are of the graphical
type. It is, however, still possible to associate a graph with any generating class.
The graph defines the interaction structure in part.

Let C be a generating class and assume that C = U_ g ¢ (this assumption is
merely of technical nature). Define a graph C = (V(C), E(C)) by letting V(C) = C
and {a, B} € E(C) if and only if {a, B} C ¢ for some ¢ € C. We could call this
graph the first-order interaction graph for C since it has all main effects as vertices
and first-order interactions as edges. It is clear, that C corresponds to a graphical
model if and only if C exactly is the set of cliques of this graph. If this is the case,
we shall say that € is a graphical generating class. If there are cliques in the graph
that are not in €, which very well can be the case, then € is not graphical and the
interaction structure in the model is not adequately described by the graph alone.
Note that these remarks imply that the interaction structure in a graphical model is
determined by the first-order interactions, since these interactions define the graph,
which, in turn, gives us its cliques and thus its interactions of higher order.

The simplest example of a hierarchical model which is not graphical is that with
C={1,2,3}and C = ({1, 2}, {2, 3}, {1, 3}}. Its first-order interaction graph is

2

A,

i.e., the complete 3-graph. If C had been graphical, € should have been {{1, 2, 3}}
which is not the case. The model in question, that of vanishing second-order
interaction in a three-way table, is also known as the simplest nondecomposable
hierarchical model, and it is well known that it cannot be interpreted in terms of
conditional independence.

In the next section we shall see that all decomposable models are graphical and
characterise graphs corresponding to decomposable models.

4. Decomposable models and graphical models. Lauritzen, Speed and Vijayan
(1978) (LSV) study properties of generating classes and their first-order interaction
graphs, especially w.r.t. the notion of a decomposition. This is done in a purely
graph-theoretic framework and they therefore use a slightly different terminology
to be able to relate their results to other areas of mathematics.
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A generating class is, in LSV, called a generating class hyper graph (g.c. hyper-
graph). The first-order interaction graph of a generating class is called the 2-section
of the g.c. hypergraph.

Here we shall quote some of the results from LSV of importance to us. For
proofs and details, the reader is referred to that paper using the “translation key”
just given. Corollary 4 in LSV asserts that any decomposable model is graphical. This
fact was noted by Andersen (1974) in a somewhat disguised form (his Theorem 5).

We are now led to the following considerations: decomposability is a property of
a generating class, a property which is not too easy to get hold of and verify
directly. We have just seen that any decomposable model is graphical, i.e., is very
well represented by its first-order interaction graph. Then decomposability must be
a property of such a graph. Theorem 2 of LSV asserts (among other things) that:
the cliques of a graph form a decomposable generating class if and only if the graph is
triangulated (i.e., contains no cycles of length > 4 without a chord). For the notion
of a triangulated graph, see Berge (1973).

This result is definitely the main result of LSV and gives us a possibility of
making an immediate visual check on the decomposability of a given graphical
model, see our tables in Section 6.

Thus the smallest nondecomposable graphical generating class is given by the
4-cycle:

4 3

ie, with C = (1,2,3,4}, C = {{l, 2}, {2, 3}, (3,4}, {1, 4}}. In fact, Andersen
(1974) gives this example of a nondecomposable model that can be interpreted in
terms of conditional independence (1 and 3 are c.i. given 2 and 4, 2 and 4 are c.i.
given 1 and 3).

The Markov interpretation originally made by Goodman, Haberman etc. is

along the following lines: a generating class C = {a,, - - -, a,} is decomposable iff
its elements can be ordered so that
4.1 gn(auU---Uag_)=ana,r,€{l---,t—1}

' t=2,---,k

It follows that
by=a\(aq,U- - Ua_)=a\a #*3.
It is easy to see that, if P is hierarchical with generating class C, that is
P(i) = exp 27,3 ¢, £ (),
then the conditional probability

P(iy,liau - uap-)
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simplifies to P(i, [i.,) where
¢=a\b=ana,

and that the marginal probability P, , ..., _, satisfies the hierarchical model with
generating class C = {q,}. It follows by induction that

P(i) = P(i, )T~ ,P(i, li,)
and that the distribution of an X with probability P may be characterised by the
sequence of Markov properties

conditional distribution of X,, given X, ...

ua,_,
= conditional distribution of X, given X_, t=2,--- k.
Further, (2) may be rearranged as
., P(i
P(i) = ———== ! (."')
HI-ZP(lb,)

which is the explicit formula for P and includes as a special case the formula for
the maximum likelihood estimate of P.

In order to arrive at this formula by the above method it is necessary to search
for an ordering of the elements of € which satisfies (4.1). This search is helped by
reference to the graph and also by the awareness that each element g, must contain
at least one element which is not in a¢; U - - - Ua,_,. There are, generally, many
orderings satisfying (4.1). Haberman proved that there are at least k by proving
that any element of C may be chosen as initial member of some sequence. That
there may be many more is illustrated by the example with |I'| = 6 and

€ = ({1,2), (2.3}, (4.5}, (1.5, 6})
for which the graph is

§ 5 4
It turns out that 14 of the 4 ! = 24 possible orderings satisfy (4.1).

The description of the Markov property given by the graph seems more natural
since it is immediate that the property does not involve an ordering of the elements
of C.

Theorem 2 in LSV also characterises decomposable graphs by a combinatorial
property involving a certain counting index. Since this index is involved fundamen-
tally in the estimation formula, we shall discuss this in the coming section.

5. The index and the estimation formula. Haberman (1974) introduces the
adjusted replication number for subsets of sets in a generating class. In the decom-
posable case he shows that this number enters in the explicit formula for the
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maximum likelihood estimate ﬁ(i) of P(i). In LSV a related quantity is defined.
Whereas the adjusted replication number is defined recursively, this index is
defined directly.

Let C be a connected graph (C, E(C)) and d C C be a complete subset. The
pieces of C relative to d are defined as follows: remove d from C and form the
subgraph C\ 4 with vertices C \ d and edges which are those in E(C) that do not
involve vertices in 4. C \ d now has one or more connected components A,, t € T,
say. Let C, be the subgraphs of C obtained by readjoining 4 to the subgraphs A,,
i.e., C, has vertex set 4, U d and edges which are those in E(C) that only involve
vertices in 4, U d. C,, t € T are the pieces of C relative to d.

Probably the procedure is best illustrated by an example:

Consider this graph and let d = {3}. By removing d we get the following connected
components:

4

Readjoining d to these components we get the pieces:
2
1 3 and 3o——5

4
For d = {1, 3} we get components of C\ 4:

20,
5

and thus pieces

2

A 1q—p3 10————eo——5
I v a
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Clearly, since d was complete in C, d is complete in all the pieces C,, but not
necessarily a clique in C, (i.e., maximal).
Let »(d) be defined as

v(d) = 1 — the number of pieces of C relative to d in which d is not a clique.

In the example given above we have »({3}) = — 1, since {3} is not a clique in any
of the two pieces and »({1, 3}) = — 1 since {1, 3} is a clique in 10———5—-—05

but not in the two remaining pieces.
Corollary 7 of LSV asserts that for any connected graph C we have

2dcomplete”(d) >1

and Theorem 2 of LSV that C is decomposable if and only if equality holds. Thus we
have a combinatorial identity characterising decomposable graphs.

If C is not connected itself but has connected components C,, t € T we define
an index »,(d) for each of the components and have that C is decomposable iff

2er2av(d) =1T|,
which is an easy consequence of the inequality.
The index is primarily a tool for revealing combinatorial properties of decompos-
able graphs. However, it is worth noting that this index occurs in the estimation
formula.

In a decomposable, and thus graphical model the maximum likelihood estimate ﬁ(i)
of P(i) based upon n independent observations, is given by

ﬁ(l) = [HteTHdn(id)p’(d)] |an|,

provided that all n(i;) are positive. (In this formula »(d) is interpreted as zero if
dgCcC,)

To show this result we first realise that it is enough to consider connected graphs.
For the various connected components correspond to independent sets of factors
and their probabilities as well as their estimates multiply. Next we see that the
formula is correct for a graph with just one clique. This is clear because such a
graph corresponds to an unrestricted probability and in that case we have

B(i) = n(i)/n.

Noting that for such a graph we have »(d) = 0 unless d = C in which case
v(d) = 1, we see that our formula is correct in this case.
The final step in the proof is an induction argument using two basic facts:

(i) if a generating class C is decomposed into @ and % such that @ U %
C,&N % = and 4 N B = a* N b* for some a* € @, b* € B, where 4
Ugzee@ B = U,cqb, then

Poliy)Pyis)

Pgen b‘}(ia‘ nb*)

’

Poi) =



532 J. N. DARROCH, S. L. LAURITZEN AND T. P. SPEED

which, e.g., follows directly from Theorem 2 of Andersen (1974);

(i) if a generating class C, where C is the maximal cliques of a connected graph
C is decomposed as above, then both @ and % are the cliques of the subgraphs A
and B, these are both connected and the indices »,, vz and v satisfy

ve(d) = v (d) + vg(d) ford # a* N b*
ve(d) = v (d) + vg(d) = 1 ford = a* N b*.
This is Lemma 8 of LSV.

If we use these two facts and assume the result to be true for all graphical
models with fewer than |C| cliques, we get

Bofi) = L0 Palls) _ LanG)™LnG)™®
€ P(a‘ﬁb‘)(ia‘nb‘) n(ia‘nb‘)
= Hdn(id)VC(d)/ n
where we again have let v,(d) = O[vgz(d) = 0] if d Z A[d g B].

The estimation formula makes it possible for us to derive some further properties
of our index. Let n, = || and suppose that we have n = |I| = I . .n, observa-
tions with exactly one observation in each cell, i.e., n(i) = 1 for all i. Then, clearly

P@i)=n""

Using our formula for a connected graph C we also get

P(i) = n~'Tn(i,)"@
=n _lHd(HyéEdny)y(d)

dy.
= p-! wd) — -1 DFFENUS
=n HyECHdSByny =n HyECny

Since this expression is valid for all possible values of n,, we must have for a
connected, decomposable graph C
Zicongn¥(d) =0 forally € C.
Since
Z(d)=1=Z,5,v(d) + 2,5 (d),
we thus have, for all y € C,
Zdzyed’;(d) =1
for any connected, decomposable graph C.
A further identity is obtained by summation of the above identity for y € C:

IC] = Z,ecZas,(d) = Z,/d|v(d).

6. Graphical models of dimension less than or equal to five. Here, we shall give
the graphical representation and the interpretation of all graphical models corre-
sponding to an m-dimensional contingency table with m < 5. Apart from the
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interpretation column this is just a question of listing all graphs with less than five
vertices. We do this both to illustrate the material in the previous sections and as a
counterpart to the tables in Goodman (1970) of all hierarchical models of dimen-
sion < 4. We only list connected graphs since other models can be constructed by
using these as connected components of other graphs. As remarked earlier, the
various connected components in a graph of a graphical model correspond to
independent sets of factors.

Giving the various interpretations in terms of conditional independence we shall
use the notation of Goodman (1970), e.g.,

[1®2)3]

meaning that, given 3, the factors 1 and 2 are conditionally independent. In Table 1
we list the decomposable graphical models and in Table 2 the nondecomposable
models where we also indicate the critical > 4-cycle.

TABLE 1
Decomposable models of dimension less than or equal to five.
graph interpretation
b4 .
1 unrestricted
{o—2 unrestricted
2
A unrestricted
1 3
to—sg—3 [1®3[2]

[1®3,42]1n[1,2®43)]

_.
IN)
w
~é

1 [1®3®4)2]

1 (1®3,42]
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2 3
1®32,4]
1 4
2 3
unrestricted
1 4
T2 3 { s [1®3, 4, 52}, etc.

2
[1®2®3®4|5]
1

[1©3,4,52]n[1,2®4® 53]

>s<
1 2
1 2

*>—yg
>
[ SS——

5 4

[1®5®32,4]N[1®3, 4,52
N[5 ® 1,2, 34}

1,2®4,53]1N[1®3,4,5]2]

4
5
4
1 2
5

1©2®3,4I5]

>

2

1

3
4
3
3
2 3
5
4
3
1,2®3,4I5
3 [ 151
L

1



MARKOV FIELDS AND LOG-LINEAR MODELS

2
/\>3 4 2®5®4)1,3]1Nn[1,2 5143
)
2
@3—4 (1,2, 5®43] N [1® 3,412, 5]
S
1 2
g >3 [1®3®5]2,4]
5 4
1 4 5
[1,2,3® 54]
2 3
2 3
M [1©3,42 5 N[1,2®43,5]
1 5 4
2 3
5 [1,2®5[3,4]
1 4L
) ,
1 3
4®5]1,2,3]
5 4

3
2 4L
unrestricted.

535



J. N. DARROCH, S. L. LAURITZEN AND T. P. SPEED

TABLE 2
Nondecomposable models that are graphical of dimension less than or equal to
five.
graph > 4-cycle interpretation
2 3
{1,2,3,4) [1®32,4]n[2®41,3]
1 4
2
1 3
{1,2,3,4,5) [1,2 ® 4|3, 5), etc.
5 4
3
1 5 {2,3,45) [1,2®5]3,41n [1®3, 4,572
NB®1®4)2 5]
4
2 3
A {1,2,3,5} [1,2®4)3,5] N [1 ®3,4)2,5]
N[2®4,5|1,3)
1 5
2 3
4 {1,3,4,5} [1®2®4|3,5]
{2,3,4,5) and N[B®5|1,2,4]
1 5 {1,2,3,5}
2, 3
4 {1,3,4,5}and [1,2®4|3,5)
} {2,3,4,5}) NB® 5|1, 2,4)
1 5
2
3 {1,2,3,4) [1®3]2,4,5)

N4

N2 ® 41,3, 5).
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Note that the last graph in Table 2 is not triangulated although it is made up by
triangles. {1, 2, 3, 4} is a cyclic subgraph without a chord. Thus the term “triangu-
lated” is a bit misleading.

The interpretation column is made to give an interpretation in usual terms. Of
course other conditional independence properties can be derived from those listed
using rules of conditional independence. The most accurate interpretation will
always be that the model consists of all Markov fields on the given graph.

To illustrate the complexity of the various types of models we have computed the
number of possible models of any given type for a given contingency table of
dimension < 5. The number of general log-linear interaction models is equal to
2¥~'. The number of graphical models is equal to "_y(7)2®. The number of
decomposable models does not seem to admit an explicit formula, but can be
counted using the graphs in Tables 1 and 2. To count the number of hierarchical
models is tedious for n = 5.

TABLE 3
Number of models of given type.
dimension
type 1 2 3 4 5
Interaction 2 8 128 32,768 2,147,483,648
Hierarchical 2 5 19 167 7,580
Graphical 2 5 18 113 1,450
Decomposable 2 5 18 110 1,233

7. Some final remarks. Finaily we shall give some suggestions as how to use
the models and some possible directions for further work.

Searching for models. The graphical models are primarily relevant for the analysis
of contingency tables of rather high dimension where it is difficult a priori to have
very precise ideas about the relevant models and where one initially is looking for
possible conditional independence among factors. We suggest that in such cases the
graphs and their associated models be used directly in the search for possible
models rather than the generating classes. It assures interpretability of any final
model and it is in fact a very handy aid in visualising the features of the models.
So, instead of trying gradually to remove interactions of high order, try to remove
edges or throw in edges.

Estimation and test of hypotheses. At pfesent, the graphs do not seem to be of
great help in the numerical procedures of estimation and testing. There is some-
thing to be gained in discovering decomposability, thereby reducing the estimation
problems. It might be the case that the graphs could be used in the estimation and
testing problems. Consider for example the following model:
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The model is not decomposable because of the 4-cycle to the right. On the other
hand, the nondecomposability is isolated to that region. So, in fact, numerical
iteration is only needed to find the marginal estimates in the table corresponding to
these four factors. The estimate for the entire table can then be combined easily
from this and an explicit formula for the marginal probability of the remaining
factors using fact (i) in the proof of the basic estimation formula.

Similarly, we can get a simplification in a testing problem. Suppose that we want
to find the likelihood ratio statistic for the hypothesis that the model

can be reduced to

Even though neither of the two models are decomposable, the difference between
them is isolated to a decomposable region. Therefore, the likelihood ratio test
statistic is nothing but that of testing independence in the two-way table involving
the two factors at the left.

There is some work to be done in giving a good formulation of “local decompos-
ability” and using such a notion in an efficient way in estimation and testing
problems.

Exposition of the theory. Another possible use of the graphs is in an exposition of
a theory of graphical models for contingency tables that uses the graphs directly
instead of first relating these to generating classes and hierarchical models. This
could have important pedagogical advantages.

We hope in the future to be able to give some more content to the vague remarks
above.
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