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The recent Joint Commission on Accreditation of Healthcare Organization (JCAHO)
requirement that hospital accreditation be based upon a Total Quality Management
(TQM) approach has focused the attention of health care administrations on the use of
techniques such as control charts. However, control charts are not typically adjusted for
severity of illness. This adjustment is needed because, unlike industrial organizations,
hospitals are not able to control all of their inputs and must accept variances in their
patients. In this paper, we present a methodology for adjusting a health care organiza-
tion’s control charts to reflect their patient population’s severity of illness during different
time intervals. We then demonstrate that risk-adjusting expected patient outcomes can
change our assessments of the relative quality of care offered by a health care organiza-
tion in different time periods.

Keywords: Control chart, quality of care, risk adjustment, severity of illness, total
quality management.

1 Background

1.1 Health care quality management

“Quality is all of the features and characteristics of a product or service that contribute
to the satisfaction of a customer’s needs (Besterfield, 1986).” Until recently, most
health care administrators thought that the quality of their organization’s products and
services (patient care) was a clinical, rather than an administrative, concern. And, they
relied upon health care professions to monitor the quality of care in their organiza-
tions. With the introduction of prospective payment systems, all components of the
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health care industry have become far more competitive. Health care organizations
have responded to these forces by becoming increasingly concerned about their quality
of care and have sought effective means for managing it. Identifying patient outcomes
and developing algorithms to estimate those outcomes under different sets of circum-
stances are a necessary prerequisite for effective quality of care management. It is
because of these needs to relate a specific patient’s outcomes to that patient’s particular
circumstances that quality control has become an integral part of health care quality
management programs.

1.2 Patient outcomes assessment

Mortality (patient lives or dies) is frequently used to categorize outcomes for patients
who have an acute, life-threatening illness such as myocardial infarction. However,
morbidity or length of stay might be better outcome categories for patients who have
chronic diseases such as hypertension or diabetes where death may be less immedi-
ately threatening. In this paper, we will use mortality (yes /no) as our outcome category
in all of our examples. Within both the group of patients who live and the group that
dies, some patients might receive good care while other patients in that same out-
come category receive poor care. Likewise, some patients will be so ill that they
cannot be saved by the best of care, while other patients will be saved despite the fact
that they have received poor care. These interactions between patient outcomes,
quality of care, and the severity of a patient’s illness suggest that when a patient dies,
his/her mortality might be attributed to either the severity of illness or to the quality
of care he/she received (Gustafson et al., 1986; Hannan and Hartman, 1989). Be-
cause of the radically different implications of these attributions, it is important that
health care organizations be able to separate the influences of quality of care from
those of severity of illness when assessing patient outcomes. Without this ability,
instances of poor and good quality of care cannot be determined. Risk-adjustment
provides a means for making these distinctions and it has been used successfully to
risk-adjust patient mortality as well as patient costs of care.

1.3 Risk-adjustment studies

Dubois et al. (1987) used a linear regression model to adjust the actual death rates in
93 hospitals. In this study, the death rates for hospitals ranged from 0.3 to 5.8 percent.
After adjusting for different average patient risk levels, the predicted death rates
range for these hospitals was reduced by 0.36 to 1.36 percent. Eleven (11.8%) of
the hospitals in this study had death rates which were more than two standard
deviations greater than their predicted death rates and nine (9.7%) of the hospitals
had death rates which were more than two standard deviations less than their predicted
death rates. Thus, a total of 20 of the 93 hospitals (21.5%) had important differences
between their actual and predicted mortality rates which could be attributed to differ-
ences in patient risk levels.
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Hom et al. (1986) demonstrated the importance of adjusting expected patient costs
to reflect differences in severity of illness. In their study of 467 diagnosis-related
groups (DRGs) in 15 hospitals, they found that a four-category severity of illness
index explained more than 10% of the variability in costs for 94% of their DRGs and
more than 50% of the variability in costs for 36% of their DRGs. Thus, in approxi-
mately one-third of the DRGs studied, severity of iliness accounted for more than
half of the variability in total patient costs. For their entire patient population, DRGs
explained 28% of the variability in costs, whereas severity-adjusted DRGs explained
61% of the variability in costs. In contrast, after the effects of severity-adjusted DRGs
were removed, a hospital variable only accounted for 6.3% more of the variability in
patient costs. Thus, even a simple severity of illness index can have a significant
impact in predicting patient costs and can have even a greater impact than the diag-
noses themselves. Another study by the same authors ( Horn et al., 1985) investigated
the impact of risk adjustment on prospective payments in fifteen hospitals. This study
found that risk adjusting prospective payments had as much as a 35% impact in
total operating costs. Thus, these studies confirm that the individual characteristics of
patients can be important in determining overall treatment costs for patients as well
as their predicted mortality.

1.4 Severity of iliness measurement

Many methods have been proposed for measuring severity of illness in patients. Some
of these differences in methods are caused by different definitions of severity of ill-
ness and others are attributable to different assumptions regarding how/when severity
of illness should be measured (Thomas and Lango, 1990; Fetter et al., 1991). Even
for mortality, perhaps the simplest severity of illness concept, there are no commonly
accepted modeling standards (Hadorn et al., 1993). The sections which follow briefly
describe seven severity of illness measurement systems. The relative accuracies of
these systems were compared in a previous study of myocardial infarction patients
(Alemi et al., 1990).

Computerized Disease Staging (CDS) (Gonnella et al.,1984): This index is de-
signed for a broad range of patients and is not limited to specific illnesses. Disease
staging assumes that diseases are first localized and later spread to other body systems.
As a disease advances to higher numbered stages, it is associated with increasing risk
for the patient. The CDS system has four stages which can be subdivided into addi-
tional categories. Stage 1 includes conditions with no complications and minimal
severity risk for the patient. Stage 2 includes problems which are contained in one
organ or system. Stage 3 includes problems in multiple sites and general systemic
problems. Stage 4 is death. As frequently implemented, CDS collects ICD-9-CM
codes from discharge abstracts, does not include comorbidities or death adjustments,
and uses an ordinal scale to represent severity of illness.

Patient Management Categories (PMC) (Young, 1985): This index is designed
for a broad range of patients and is not limited to specific illnesses. Patient manage-
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ment categories specify the costs for different care regimens. Since increasing costs
are often associated with an increasing severity of illness, PMC’s cost weights are
frequently used as an indication of the patient’s severity of illness. As frequently
implemented, PMC collects ICD-9-CM codes from discharge abstracts, does not
include procedures or death adjustments, and uses an interval scale to represent
severity of illness.

Acute Physiological and Chronic Health Evaluation (APACHE II) (Knaus et al.,
1985): This index is designed for a broad range of patients and is not limited to
specific illnesses. The APACHE II score is the sum of three components. These are:
(1) deviations from norm on 12 physiological variables, (2) an age index, and (3) a
chronic conditions index. As frequently implemented, APACHE II collects physiologi-
cal findings from chart reviews at admission and uses an interval scale to represent
severity of illness.

Medisgroup (MDGRP) (Brewster et al., 1985): This index is designed for a broad
range of patients and is not limited to specific illnesses. MDGRP scores have five
levels, O to 4. At Level 0, there are no clinical findings. At Level 1, there are minimal
abnormal findings. At Level 2, there are either acute findings with an unclear potential
for organ failure or severe findings with a high probability of imminent organ failure.
At Level 3, there is a high potential for imminent organ failure. And, at Level 4, organ
failure is indicated. Unlike many of the other systems, there are sets of MDGRP
indicators which are most relevant for different diagnoses. As frequently implemented,
MEDISGRP collects physiological findings from chart reviews at admission and uses
an ordinal scale to represent severity of illness.

Computerized Severity Index (CSI) (Backofen et al.,1987): This index is designed
for a broad range of patients and is not limited to specific illnesses. As frequently
implemented, CSI collects ICD-9-CM codes from discharge abstracts and physiologi-
cal findings from chart reviews at admission. There is no death adjustment and an
ordinal scale is used to represent severity of illness. CSI is the only severity of illness
system described in this section which contains both diagnoses and physiological
findings. CSI begins with the patient’s principal diagnosis and uses physiological
findings to adjust the diagnosis. CSI’s scores range from O to 4.

Predictive Index for Myocardial Infarction (PIMI) (Pozen et al., 1980): This index
was designed specifically for heart disease patients. Although it has sometimes been
scored from chart reviews, it is intended to be used prospectively to estimate the
probability of a myocardial infarction and to assist physicians in determining which
patients might most benefit from intensive coronary care. The assumption in using
PIMI for severity of illness measurement is that patients who could most benefit from
intensive care are also those patients with the most severe illnesses. When used
retrospectively, PIMI collects physiological findings from chart reviews at admission
and uses an interval scale to represent severity of illness.

Ischemic Heart Disease Index (IHDI) (Gustafson et al., 1986): This index was
designed specifically for heart disease patients. As frequently implemented, IHDI
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produces a score ranging from 0 to 100. IHDI collects physiological findings from
chart reviews at admission and uses an interval scale to represent severity of illness.

2 Control charts

1.1 Introduction

Many authors have suggested the use of industrial quality control methods for
managing the quality of care in health care organizations (Ramsey and Cantrell, 1985;
Berwick, 1989; Laffel and Blumenthal, 1989). The recent Joint Commission on
Accreditation of Healthcare Organization (JCAHO) requirement that hospital accredi-
tation be based upon a Total Quality Management (TQM) approach has focused the
attention of health care administrators on the use of techniques such as control charts.
However, control charts are not typically adjusted for severity of illness. In this paper,
we present a methodology for doing so.

Control charts have traditionally been used to manage the quality of industrial
processes by assisting administrators in determining whether the outputs of those
processes are in or out of control. A process is defined as being out of control when
its observed outcomes are different from those which would be expected to occur
through random variations. When the outputs of the process are within the tolerances
which would be expected by random variations, the process is defined as being in
control. And, when it is out of those tolerances, the process is defined as being out of
control. Usually, these tolerances are identified by two means: control limits attached
to the observations and a combination of flags which look for trends, cycles, and other
abnormal patterns in the observations.

One of the primary quality management differences between industrial organiza-
tions and hospitals is that industrial organizations are able to control their inputs,
while hospitals must accept variances in their inputs (patients). Because industrial
organizations are able to standardize their inputs, they can assume that any output
variations must be caused by process variations. However, since hospitals are not able
to control their inputs, they must separate their output variations into those components
which are caused by differences in inputs (severity of illness) and those which are
caused by differences in processes (quality of care). The remaining sections of this
paper give examples both of how control charts and mortality rates have traditionally
been applied to make quality of care comparisons as well as of how they should be
used to adjust mortality rates to account for differences in severity of illness.

2.2 Control charts without risk-adjustment

Table 1 contains control chart information which we created for comparing mortality
rates in different time periods (T through T) for the same health care organization.
Initially, this data is used to estimate p (the probability of mortality). Later, we can
use the control chart’s upper and lower control limits to assess whether measurements
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Table 1

Unadjusted time period mortality rates.

Time No. No. Observed 90% 90%

period cases deaths mortality UcCL LCL
T, 186 49 0.2634 0.3022 0.1970
T, 119 24 0.2017 0.3153 0.1838
T3 111 25 0.2252 0.3177 0.1815
Ty 26 3 0.1154 0.3903 0.1089
Ts 39 15 0.3846 0.3645 0.1347
Ts 23 5 0.2174 0.3992 0.1000
T 61 16 0.2623 0.3414 0.1577
Ty 20 9 0.4500 0.4100 0.0851

Total 585 146 0.2496

in subsequent time periods are from processes which may have control problems.
Readers who are familiar with control charts will note that this table differs from
traditional control chart information. Instead of sampling with a fixed sample size,
this method includes in the sample all patients meeting the selection criterion who
were seen at the health care organization during a particular time period. Thus, the
number of cases varies between samples (time periods) and different sample sizes are
used for each time period’s mortality rate computation. Although a constant sample
size may be preferable in industrial control charts, this is not possible when each
sample includes all of the patients seen during a fixed time interval.

The columns 90% UCL and 90% LCL in table 1 represent the Upper Control
Limits and Lower Control Limits, respectively, for each sample mortality rate. These
two values are used to assess the significance of variations in individual time period
mortality rates from the average mortality rate in all eight time periods. The reader
should note that there are no standard percentages for the upper and lower control
limits and that their determination is a matter of policy for each health care organiza-
tion. When an individual time period’s mortality rate is above the UCL, the processes
which produced that measurement could be out of control and their output quality is
of concern. Conversely, when a time period’s mortality rate is below the LCL line,
they could represent processes of exceptional quality. If a time period’s mortality rate
is between the UCL and LCL values, the processes which produced that measurement
are most likely in control and any differences from other time period measurements
are most likely due to random chance. However, the reader should look for trends and
cycles in the measurements before concluding that these processes are in fact in con-
trol. Appendix A contains a more detailed explanation of control chart indicators and
their usage in determining processes which are out of control.
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The calculations in table 1 are not difficult. The number of cases and number of
deaths in each time period are inputs to the formulas. The formulas for calculating the
population mortality rate (P), individual time period observed mortality rates (P;),
sample-adjusted population standard deviations (S;), sample-adjusted upper control
limits (UCL;), and sample-adjusted lower control limits (LCL;) are given below as
equations (1) through (5). In these equations, d; is the number of deaths for a time
period, n; is the number of cases for a time period, and 1, is the r-value.

The t-value for the UCL and LCL equations is determined by the time period’s
sample size (number of cases) and by the study’s desired confidence level. A 90%
confidence level was selected for this example. This confidence level means that 90%
of the sample measurements (time period mortality rates) will normally be within the
control chart’s upper and lower control limits. Conversely, 10% of the sample meas-
urements will normally be outside of the control chart’s upper and lower control
limits.

Although we use the ¢ distribution in all of our examples, the reader should be
cautioned that use of the symmetric ¢ distribution as an approximation for the
asymmetric binomial may yield poor approximations when there are either small prob-
abilities or small sample sizes. In these instances, the reader should use software
packages which can provide bounds computed directly from the binomial distribu-
tion. These limits may differ from the ones computed by using the ¢ distribution.
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We can use these formulas to calculate the Population Mortality Rate and the Ob-
served Mortality Rate, the Population Standard Deviation, and the Upper and Lower
Control Limits for time period, T;. These calculations are shown below in equations
(6) through (10).
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s - [02496+(1-024%
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UCL; = 0.2496 + (1.658 * 0.0317) = 0.3022,
LCLy; = 0.2496 — (1.658 = 0.0317) = 0.1970.

= 0.0317,

of the time periods.

Mortality

The middle line in figure 1 is parallel to the x axis at a 24.96% mortality rate and
it is the Population Mortality Rate. Since this measurement is a weighted average, it
will assign greater importance to the outcomes in the three time periods with the
largest number of cases (T, through T3) and will assign lesser importance to the out-
comes in the time periods with fewer cases (T;—Tg). Because of the large difference

Figure 1 is a control chart which graphically displays the data in table 1. This
type of control chart is called a p chart because it measures the probability that an
outcome will occur. In this chart, mortality rates (the probabilities that patients will
die in specific time periods) are measured along the vertical axis and the different
time periods are measured along the horizontal axis. There are three lines in figure 1
and a series of unconnected dots. The dots are the observed mortality rates for each
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Figure 1. Unadjusted mortality rate control chart.




F. Alemi et al. / Risk-adjusted control charts 53

in the number of cases in different time periods, this measurement has the effect of
assessing the quality of care in the five smaller time periods according to the standard
of care which is set by the three larger time periods. Even though this presents a
problem, we would still recommend sampling health care organizations by fixed time
intervals instead of using a fixed sample size (e.g. each 100 patients). This is because
sampling at fixed intervals which correspond to the administrative cycles of individual
organizations allows quality management to be more easily incorporated into the
normal management processes of these organization.

The two lines on either side of the Population Mean Mortality rate are the 90%
UCL and the 90% LCL for each time period. In this example, the 90% UCL and the
90% LCL for T, with 186 cases are at 30.22% and 19.70%, respectively, while the
90% UCL and the 90% LCL for Ty with only 20 cases are at 41.00% and 8.91%,
respectively. In reviewing control charts, it is important to remember that a larger
number of cases decreases the value of the standard error of the mean and a smaller
number of cases increases the value for the standard error of the mean. As a conse-
quence, when the sample size increases, the UCL and LCL become closer to each
other. Using the 90% control limits to define time period quality, we see that the
mortality rates in time periods Ts and in Ty are beyond our control limits and we need
to investigate why this is so. Since, at a 90% control limit, 10% or 0.8 time periods
would be expected to be outside of the upper and lower control limits, this appears to
be a situation in which one or both of these time periods has a significant quality
deviation and they both should be investigated more thoroughly using the techniques
in appendix A.

Although this discussion has evaluated all eight time periods retrospectively for
illustrative purposes, a more realistic presentation would evaluate each time period as
it occurred. Thus, the potentially out-of-control situation in time period 75 would have
been evaluated at the end of that time period and any remedial action would have
been implemented during time period Ty. As a consequence, when the process was
again potentially out of control in time period Ty, the remedial action would have
taken effect and the health care organization’s management team would evaluate other
alternatives.

The above discussion summarizes the manner in which control charts and mortal-
ity rates have traditionally been used to make comparison between time periods. The
major problem with this technique is that it assumes that all eight time periods in the
study treat patients with the same average severity of illness. Specifically, since all
deviations from the population mortality rate are attributed solely to differences in
quality of care, there is an implicit assumption that the severity of illness in patients
seen in all eight time periods is the same. While it might be permissible to make this
assumption in rare instances, severity of illness generally varies considerably between
patients and time periods. The section which follows demonstrates how control chart
theory can be modified to accommodate different severity of illness levels in different
time periods while still being able to make inter-time period mortality rate comparisons.



54 F. Alemi et al. / Risk-adjusted control charts

2.3 Risk-adjusted control charts

Table 2 contains risk-adjusted control chart data for the eight time periods in this
study. Six of the eight columns in table 2 have identical titles to those in table 1. The
only differences are Expected Mortality and (X p * ¢)/n. Expected Mortality is the
risk-adjusted expected mortality rate, and (Xp * ¢)/n is the sum of the products of
the probabilities for mortality and the probabilities for survival for each case in a time
period divided by the number of cases. Four steps are required to risk-adjust control
chart data. These steps are: (1) determine the number of expected deaths after risk-
adjustment in each of the time periods, (2) calculate the expected mortality rate for
each time period, (3) calculate the standard deviation of the expected mortality rate
for each time period, and (4) calculate the risk-adjusted UCL and LCL values for each
time period.
Table 2

Risk-adjusted time period mortality rates.

Time No. No. Observed  Expected 90% 90%

period cases  deaths  mortality mortality (Ip*gq)/n ucL LCL
T, 186 49 0.2634 0.2514 0.1274 0.2948 0.2080
T, 119 24 0.2017 0.2315 0.1063 0.2811 0.1819
T 111 25 0.2252 0.2192 0.1090 0.2712  0.1672
T, 26 3 0.1154 0.2230 0.0967 0.3241 0.1219
T 39 15 0.3846 0.2712 0.1173 0.3621 0.1803
Ts 23 5 0.2174 0.2166 0.1156 0.3341 0.0991
T, 61 16 0.2623 0.1989 0.0955 02645  0.1333
Ty 20 9 0.4500 0.4052 0.0933 0.5184 0.2920

Total 585 146 0.2496

We begin by predicting who is likely to die. Most statistical packages have a
facility for generating such predictions. In a regression analysis, the model’s dependent
variable is the observed mortality (1 if the patient dies, 0 otherwise); the independent
variables can be chosen from the severity of illness systems which were previously
reviewed or they can be disease specific. In our example, our independent variables
were Computerized Disease Staging (6 of 7 categories), Patient Management Categories
(1 of 4 cost weights), Acute Physiological and Chronic Health Evaluation combined
score, Medisgroup (4 of 5 levels), Ischemic Heart Disease Index score, sex, and age.

A regression model which includes all the patient data is used to predict outcomes
for each patient. Once the cases are assessed, their predictions are summed by time
period to yield the expected number of deaths that should occur in each of the eight
time periods. Since the model only uses severity of illness variables to predict the
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number of patients not discharged alive in each of the time periods, this model in
effect produces a risk-adjusted estimate of the number of deaths that should have
occurred in each time period.

Now that the number of risk-adjusted deaths has been calculated for each time
period, the next steps are to calculate the risk-adjusted expected mortality rates (B)
and the risk-adjusted standard deviations (S;) for these same time periods as well as
their risk-adjusted lower and upper control limits (UCL; and LCL;). The formulas for
these computanons are shown below as equations (11) through (14). In these equa-
tions, ¥ j=1 P-j is the expected number of deaths for a time period, #; is the number
of cases for a time period, and #,/, is the t-value for a particular confidence level
and sample size. Here, P is the probability that patient j in time period i dies. By
theorem 6.9.3, p. 207, of Flsz (1963), we know that the mortality rate has an asymp-
totically normal distribution provided that there is a sufficient sample size.

n D
. Bl
Pi = _&, (11)

n;

. IR B ra-By)

S = = ; (12)
UCL; = B +t4/5(5)), (13)
LCL; = B —t4/5(5)). (14)

We can use the above formulas to calculate the risk-adjusted expected mortality rate
and expected standard deviation, and expected upper and lower control limits for time
period, T. These are shown below in equations (15) through (18).

46.8

L 15

A 186 = 0.2514, (15)

. _ [01274

Y a5 = 0.0262, (16)
UCL,= 0.2514 + (1.658 * 0.0262) = 0.2948, (17)
LCL,= 0.2514 — (1.658 * 0.0262) = 0.2080. (18)

The risk-adjustment model increases and decreases the expected number of deaths
in the eight time periods to compensate for patient risk levels which differ from the
overall risk level in the entire patient population. This is demonstrated in table 2 by
the fact that while the population’s mortality rate is constant at 24,96%, the expected
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mortality rate for individual time periods ranges from a minimum of 19.89% in T; to
a maximum of 40.52% in Ts. Thus, the deviation of a time period’s observed mortal-
ity rate from its risk-adjusted expected mortality rate is a more accurate measure of
its quality of care than is achieved when the time period’s observed mortality rate is
compared with the population’s mortality rate in the model which is not risk-adjusted.

Figure 2 is the risk-adjusted control chart for our eight time period example.
Notice that both axes (time periods and mortality rates) are identical in the unadjusted
and in the risk-adjusted control charts. Likewise, there are three lines and a series of
unconnected dots in figures 1 and 2. However, despite these similarities, only the

0.6

Mortality

0.1

1 2 3 4 5 6 7 8

Time Period

»_ Observed Mortality —— Expected Mortality — -~ 90% UCL ------90% LCL

Figure 2. Risk-adjusted mortality rate control chart.

series of unconnected dots have the same appearance in both figures. This is because
the series of dots represents the observed mortality rates in each of the time periods.
The three lines have a different appearance because the expected mortality rates and
upper and lower control limits have been adjusted in figure 2 to account for the dif-
ferent severity of illness levels experienced in each of the time periods.

The major change between figure 1 and figure 2 is the substitution of individual
time period Expected Mortality Rate measurements (B.) for the observed Population
Mortality Rate (P) line as the standard by which observed time period mortality rates
will be assessed. Thus, instead of a constant line at a 24.96% mortality rate, we now



F. Alemi et al. / Risk-adjusted control charts 57

have a line which bends to accommodate different severity of illness levels in each of
our eight time periods. Since the Expected Mortality Rate is now the reference for
calculating the upper and lower control limits, we can also expect that both of these
lines are adjusted up or down as the Expected Mortality Rate moves up and down.
Thus, by risk-adjusting the expected mortality rates to account for severity of illness
differences, we have also risk-adjusted the control limit lines. These new control
limits are termed the Expected Upper Control Limit (UCL;) and the Expected Lower
Control Limit (LCL;).

In figure 1, two time periods (T and Tg) had observed mortality rates which were
above the 90% UCL and this was identified as a possible out-of-control situation. In
figure 2, after adjusting for different time period risk levels, two time periods are
outside of the upper and lower control limits. However, one of the out-of-control time
periods in figure 2 is different from figure 1, and this time period, T4, might actually
be an example of exceptionally good quality of care. Had we acted on the basis of the
unadjusted control chart, we also would have investigated an abnormal level of quality
in 73 when it did not exist. This is because what the unadjusted control chart identified
as abnormal quality in time period T turned out to be a patient severity of illness
level which was much above the average population mortality rate and which led to
a large difference between this time period’s observed mortality rate and the popula-
tion mortality rate. Thus, the value of risk-adjusting control chart data has been
demonstrated.

3 Discussion

Traditional methods for measuring quality of care do not separate deviations from
standard quality levels into their components which can be attributed to severity of
illness and those other components which are attributable to other sources. This
distinction is important because the deviations which are not related to severity of
illness may be related to differences in quality of care. Risk-adjusted control charts
provide a tool for making these distinctions. In this paper, we have demonstrated a
methodology for establishing upper and lower control limits to monitor health care
processes. Since the control charts in this example are used for general problem diag-
nosis, it is permissible to have a 90% confidence level. In other situations where
control charts are used to take corrective action, it might be more appropriate to use
a wider confidence interval (95% or 99%).

Small samples are a cause for concern, and when the sample size is less than 30,
normality assumptions may not hold. However, health care administrators and
researchers are faced with the choice of either excluding small samples from their
studies or including the data and exercising Jjudgement when acting upon the results.
Again, the 90% confidence interval used in this paper’s examples is intended only as
a flag to denote situations which need further scrutiny with supplementary techniques.
For example, is there any reason that the underlying processes in the health care
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organization might be experiencing larger than normal deviations? If so, their cause
might provide the supplementary analysis that is required.

In this paper, we have demonstrated that risk-adjusting time period mortality data
can have a dramatic impact upon how we assess the comparative performance of a
single health care organization in different time periods. We have also applied these
methods to one of the TQM techniques, p charts. Other TQM control chart techniques
(such as the X chart for process means and the ¢ chart for the number of defectives)
offer similar benefits for health care organizations and future researchers should devise
techniques for modifying them to account for differing patient risk levels. With these
modifications to the ¥ and ¢ charts, other quality management tools will become
available to health care administrators and practitioners.

Although this paper has focused upon the use of risk-adjusted control charts as
techniques for quality management within a single health care organization, we
believe that these techniques can also be used by health care policy makers and
purchasers (e.g. business groups, insurance companies, and individuals) to assess the
relative qualities of care across health care organizations. Once it is determined that
the processes in individual health care organizations are in control, the next step would
be to compare risk adjusted outcomes between different health care organizations. If
these types of comparisons are not preceded by risk-adjustment, those organizations
with higher risk levels will be penalized in the analysis. However, with risk-adjust-
ment, health care decision and policy makers will be able to assess which health care
organizations really are providing the most effective care for their patients.

As we stated above, mortality is only one of the possible severity of illness
measurements. For chronic illnesses, other severity measures such as length of stay
or morbidity would be more appropriate. With these other severity measures, the
computations would essentially be the same. The only difference would be that
instead of computing the percentage of patients who died, one would be computing
the percentage of patients who recovered from the illness or were discharged within
a specified time period. Again, although there are many general severity measure-
ments, it is often better to choose those measurements that are tailored for specific
diseases.

We believe that control charts are a viable technique for health care quality analysis
and management. They are easily computed, offer a visual representation of the
problem, are adaptable to many types of information, and can be used to model a
wide range of problems. It is because of these characteristics that they should be
incorporated into the quality management programs of health care organizations.

Appendix A: Control chart indicators for out-of-control processes

In addition to looking to the appropriate control limit lines (UCL and LCL) to assess
deviations from standard, Besterfield (1986) has suggested five primary indicators
for out-of-control processes. The first indicator is a change or jump in the quality
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measurement’s level. This is often caused by a change in inputs (people, material, or
equipment) or by a change in the process itself. The second indicator is a trend or
steady change in the quality measurement’s level without intervention. This is often
due to gradual changes in process inputs. Besterfield’s third indicator is recurring
cycles. These occur in control charts when there are periodic high and low points.
These are normally caused by seasonal effects in inputs or differences that occur on
a daily or weekly basis. The fourth indicator is a large number of points near or out-
side the control limits. This often denotes that two or more populations are being
measured which have large differences in their inputs or processes. The remedy in
these situations is to construct multiple control charts. Besterfield’s last indicator is
errors is the quality measurements themselves.

Several authors have suggested the use of zone control charts with scoring rules
to determine whether processes are out of control. Normally, zone control charts are
divided into eight zones, four on each side of the mean. Zone A is the area between
the mean and one standard deviation, zone B is the area between one and two stand-
ard deviations, zone C is the area between two and three standard deviations, and
zone D is the area greater than three standard deviations. Evans (1993) proposes a
simple set of scoring rules. These rules define a process as being potentially out of
control when any one of the following situations occurs on a control chart:

1. Any point falling in zone D.

2. Two of three successive points falling in zone C on the same side of the mean.
3. Four of five successive points falling in zone B or C on one side of the mean.
4

Eight consecutive points falling in zone A, B or C on the same side of the mean.

These scoring rules assist in identifying out of control processes which do not exceed
the upper and lower control limit criterion.
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