
Creating a Relational Database Using Microsoft SQL Code

Farrokh Alemi, Ph.D.

The objective of this note is to help you understand how a relational database is
organized as a collection of tables, linked to each other. In this note, we show how
Microsoft SQL Server software can be used to create tables of data. Then, we show
how these tables can be linked. A separate note, posted to the class web site,
demonstrates the same concepts but uses Microsoft Access code to do so.

We demonstrate the concepts behind relational databases through showing a simple
electronic health record with three tables: a table on patients, another table on providers
and a third table on medical encounters/visits that link the patient and the provider.

The easiest way to create a table and insert values into it, is to import the table and
values created elsewhere by other software. Here, however, we show how SQL can be
used to create a table inside Microsoft SQL Management Studio.

Relationships

Make sure that you have reviewed the note on creating entities from a list of fields. In
database design, every entity has its own table. So in our example, patients, providers,
and encounters are considered entity. For each of these three entities we need to
create separate tables. Figure 1 shows the three entities and their relationship to each
other. The line that connects the three images of tables shows how the tables are inter-
related. Here the patient ID in the encounter table is the same as the ID in the patient
table. The provider ID in the encounter table is the same as the ID in the provider table.
The relationship among any two tables is preserved through having the same field in
each of the tables. A join command specifies which two variables are the same across
the two tables. We will discuss this more, when we cover the join types and code in a
later section.

Figure 1: Relationship among Three Entities/Tables

Creating Tables

Each table contains a series of fields. Fields are data we collect about various entities.
These fields provide the data for the attributes of the entity. To create a table, the
command syntax is:

CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype,

);

The column parameters specify the names of the fields of the table. The “datatype”

parameter specifies the type of data the column can hold. Data types are specified on

the web but the most common are varchar, integer, float, date, text. Always consult the

web for exact data types allowed in your implementation of SQL code, as there are

variations in different implementations.

The patient attributes are shown in Figure 1 and are assumed to be first name, last
name, date of birth, address (street name, street number, city, State and zip code) and
email. First name is a string of maximum size 20. Last name is a string of maximum
size 50. Street number and zip code are integer numbers with no decimals. Date of
birth is a date put in the format DD MMM YY (e.g. 19 Jan 04). The possible values for
the State are Maryland, Virginia, District of Columbia and other. Patient's telephone
number could be text or number. A patient ID (auto-number) should be used as the
primary key for the table.

Here is a code that will accomplish these requirements. Note that field names are put in
brackets because they contain spaces. Also note that the # before the table name
indicates that the table is a temporary table which will disappear once the SQL window
is closed:

CREATE TABLE #Patient (
 [First Name] char(20),
 [Last Name] char(50),
 [Street Number] Int,
 [Street] Text,
 [Zip Code] Int,
 [Birth Date] Date,
 [Email] text,
 [State] Text,
 [Phone Number] Text,
 [Patient ID] int IDENTITY(1,1) PRIMARY KEY

)

The provider attributes are assumed to be first name (text of size 20), last name (text of
size 50), whether they are board certified (a yes/no value), date of hire (in format DD
MMM YY), telephone (text or number) and email (text of size 75). Employer's ID number
should be the primary key for the table. In SQL server there is no Yes/No field but the
closet data type is a bit type, which assigns it a value of 1, 0, or Null. Here is the code
that will create this table:

CREATE TABLE #Provider (
 [First Name] char(20),
 [Last Name] char(50),
 [Board Certified] bit,
 [Date of Hire] Date,
 [Phone] Text,
 [Email] char(75),
 [Patient ID] int IDENTITY(1,1) PRIMARY KEY
);

The encounter entity is assumed to have the following attributes: patient ID, provider
ID, diagnosis (text of size 50), treatment (text of size 50) and date of encounter (date
entered in the format DD MMM YY) and encounter ID as a primary key. Each
encounter should have its own ID number. Here is the code that will create this table:

CREATE TABLE #Encounter (
 [Patient ID] Int,
 [Provider ID] Int,
 [Diagnoses] char(50),
 [Treatment] char(50),

 [Date of Encounter] Date,
 [Encounter ID] int IDENTITY(1,1) PRIMARY KEY
);

This completes the creation of Patient, Provider, and Encounter tables. Since the
encounter table shares the patient ID with the patient table and shares the provider ID
with the provider table, these tables are all related to each other. We have thus created
a relational database with 3 tables.

Where is my Table?

There are different types of table prefixes in Microsoft SQL server. The place where a
table is written is dictated by its prefix. A prefix of dbo indicates that the table should be
permanently written to the database. A prefix of # indicates the table is temporary and
should disappear if the window with the SQL code that created it is closed. A prefix of
indicates that the table is temporary but should be available to all open windows of
SQL code, not just the window for the session that created it. Thus #file is a temporary
file, ##file is a global temporary file and dbo.file is a permanent file.

Entering Data into Tables

In the previous step, we created three tables. Now we show how values can be
inserted into these tables. Table 1 shows the data that should be entered into the
Patient table.

First
Name

Last
Name

Zip
code

Date
of birth Email

Phone of
the patient

Farrokh

Alemi 22101

08-Jan-
54 Test2@gmu.edu

703
9934226

George

Smith 22102

09-Sep-
60 t@tes.com

703
8884545

Jill Smith 22103
01-Aug-

89 test@test.com
703

9934226

Table 1: Three Rows of Data for Patient Table

The syntax for inserting values into fields is provided on the web and is as follows:

INSERT INTO table_name (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);

In this code, columns refer to fields in the table. Values refer to data that should be
inserted. So to insert the values in Table 1 into the Patient table we would use the
following commands:

INSERT INTO #Patient ([First Name], [Last Name], [Street

Number],[Street], [Zip Code], [Birth Date], [Email], [State], [Phone

Number])

VALUES

('Farrokh', 'Alemi',Null,Null, 22101, '08/01/1954',

'Test2@gmu.edu',Null, '7039934226'),

('George', 'Smith', Null, Null, 22102, '09/09/1960','t@tes.com',

Null,'7038884545'),

('Jill', 'Smith', Null, Null, 22103, '01/08/1989', 'test@test.com',

Null,'7039934226');

Did you notice that the street name, street number, and state were entered as null
values? Also note that patient ID was not entered. The software will assign a unique
number for patient ID. It will automatically increment by 1 each time a new record is
entered. Finally, note that text fields are in quotes, dates are in quotes, but numbers
and null values are not. Putting the null value in quotes will enter it as if was a text,
which defeats the purpose.

The code will produce the following table of data:

First Name
Last
Name

Street
Number Street Zip Code Birth Date Email State

Phone
Number

Patient
ID

Farrokh Alemi NULL NULL 22101 8/1/1954 Test2@gmu.edu NULL 7039934226 1

George Smith NULL NULL 22102 9/9/1960 t@tes.com NULL 7038884545 2

Jill Smith NULL NULL 22103 1/8/1989 test@test.com NULL 7039934226 3

Table 3: Data as Entered by Insert Command Into #Patient Table

Note how the patient ID shows up anyway without us entering its values.

Relational Database

The tables for Provider and Encounter are created in a similar fashion by using the
“Create Table” and “Insert Values” commands. Once all three tables have been created
then a relational database has been specified and Microsoft SQL server Management
Studio can be used to analyze the data across all three tables. To analyze data across
two or more tables one needs a Join command. Join commands are described in more
detail in a later section.

