[bookmark: _Toc520966098]Chapter 2
Preparing Data Using Structured Query Language (SQL)

[bookmark: _Toc519862457][bookmark: _Toc520966099][H1] Learning Objectives
[INSERT NL]
1. Use basic standard query language (SQL) commands to manipulate data
2. Select an appropriate set of predictors, including predictors that are rare, obvious, and not in the causal path from treatment to outcome
3. Identify and clean typical contradictory data in electronic health records
[END NL]
[bookmark: _Toc519862458][bookmark: _Toc520966100][H1] Key Concepts
[INSERT BL]
· Structured query language (SQL)
· Primary and foreign keys
· SELECT, FROM, CREATE, WHERE, HAVING, GROUP BY, ORDER BY, and other commands
· Inner, outer, left, right, full, and cross joins
· GETDATE, CONCAT, STUFF functions
· RANK, RAND commandsfunctions
· Rare, obvious, causal pathways
· Comorbidity versus complications
· Landmark, forward, and backward looks
[END NL]
[bookmark: _Toc519862459][bookmark: _Toc520966101][H1] Chapter in a Glance
This chapter introduces standard query language (SQL) and how data can be prepared for analysis. Data preparation is fundamental to analysis. Without proper preparation of the data, the analysis can be misleading and erroneous. Details matter—the way each variable in the analysis is defined affects how predictive it will be. Nothing works better for data preparation than SQL. Therefore, this chapter spends a great deal of time on the use of SQL. It then shows how SQL can be used to avoid some common data errors (e.g., dead or unborn patients visiting the clinic).
[bookmark: _Toc520966102][H1] SQL Is a Necessary Skill
Data in electronic health records (EHRs) are in multiple tables. Patient information is in one table. Prescription data are in another. Data on diagnoses are often in an outpatient encounter table. Hospital data are in still another table. An important first step in any data analysis is to pull various variables of interest into the same table. Combining data from multiple tables leads to a large—often sparse—new table, where all the variables are present but many have missing values. For example, patient X could have a diagnosis and prescription data but no hospital data if she was never hospitalized. Patient Y could have a diagnosis, prescription, and hospital data but be missing some other data (e.g., surgical procedure) if he did not have any surgery. The procedure to pull the data together requires the use of standard query language (SQL).
	Before any analysis can be done, data must be merged into a single table, often called the matrix format, so that all relevant variables are present in the same place. Many statistical books do not show how this could be done and thus leave the analyst at a disadvantage in handling data from EHRs. These books do not teach use of SQL. In contrast, I do. I take a different approach from most statistical books and believe that SQL and data preparation are essential components of data analysis. An analyst who wants to handle data in EHRs needs to know SQL; there are no ifs, ands, or buts about this. Accurate statistical analysis requires careful data preparation and data preparation requires SQL. Statisticians who learn statistics without a deep understanding of data preparation may remain confused about their data, a situation akin to living your life not knowing your parents, where you came from, or, for that matter, who you are. You can live your life in a fog, but why do so? Knowing the source of the data and its unique features can give the analyst insight into anomalies in the data.
Statisticians spend most of their time preparing data—perhaps 80 percent, which is more than is spent actually conducting the analysis. Ignoring tools for better preparation of data would significantly handicap the statistician. Knowing SQL helps with the bulk of what statistical analysts do, which is why training in it is essential and fundamental.
	Decisions made in preparing the data could radically change statistical findings. These decisions need to be made carefully and transparently; the analyst must make every attempt to communicate the details of these preparations to the manager. Decisions made in preparing the data should be well thought out—otherwise good data may be ruined with poor preprocessing. Some common errors in preparing data include the following:
[INSERT NL]
· Visits and encounters reported for deceased patients. For example, when a patient’s date of visit or date of death is entered incorrectly, it may look like dead patients (zombies) are visiting the provider. Errors in entry of dates of events would skew results; thus, cleaning up these errors is crucial.
· Inconsistent data. Examples might be a pregnant male or negative cost values. Inconsistent data must be identified and steps must be taken to resolve these inconsistencies.
· Incongruous data. After a medication error, one would expect to see long hospital stays rather than a short visit. If that is not the case, the statistician should review the details to see why not.
· Missing information. Sometimes, missing information could be replaced with the most likely response; other times, missing information could be used as a predictor. For example, if a diagnosis is not reported in the medical record, the most common explanation is that the patient did not suffer from the condition. Sometimes the reverse could be true. If a dead emergency room patient is missing a diagnosis of cardiac arrest, it is possible that there was no time to diagnose the patient but the patient had the diagnosis. For example, Alemi, Rice, and Hankins (1990) found that missing diagnoses in emergency rooms increases the risk of subsequent mortality. Before proceeding with the analysis, missing values must be imputed. One must check to see whether data are missing at random or associated with outcomes. There are many different strategies for dealing with missing values, and the rationale for each imputation should be examined.
· Double-counted information. When data are duplicated because analysts joined two tables using variables that have duplicate values, errors commonly occur.
[END NL]
In short, a great deal must be done before any data analysis commences. The analyst needs a language and software that can assist in preparation of data. Of course, we do not need statisticians to become computer programmers. Thankfully, SQL programming is relatively easy (there are few commands) and can be picked up quickly. This chapter exposes the reader to the most important SQL commands. These include SELECT, GROUP BY, WHERE, JOIN, and some key text manipulation functions. These commands are for the most part sufficient for most data preparation tasks.
[bookmark: _Toc520966103][H1] What Is SQL?
SQL is a language for accessing and manipulating relational databases. SQL was organized by the American National Standards Institute, meaning that its core commands are the same across vendors. The current standard is from 1999, which is a long time for a standard to remain stable. This longevity is in part a result of the fact that SQL is well suited to the task of data manipulation. The data manipulation portion of SQL is designed to add, change, and remove data from a database. In this chapter, we primarily focus on data manipulation commands, which include things such as commands to retrieve data from a database, insert data in a database, update data already in the database, and delete data from a database.
	SQL also includes data definition language. These commands are used to create a database, modify its structure, and destroy it when you no longer need it. There are also different types of tables—for example, temporary tables of data that are deleted when you close your SQL data management software. We will also discuss data definition commands later in this chapter.
	Finally, SQL also includes data control language. These commands protect the database from unauthorized access, from harmful interaction among multiple database users, and from power failures and equipment malfunctions. We will not cover these commands in this chapter.
	[H1] Learn by Searching
Users usually learn the format for an SQL command through searches on the web. I assume that you can do so on your own. In fact, whenever you run into an error, you should always search for the error on the web. On the web, you will see many instances of others posting solutions to your problem. Do this first, because it is the best way to get your problems solved. Most students of SQL admit that they learned more from web searches than any instruction or instructor. The beauty of such learning is that you learn just enough to solve the problem at hand.
	[H1] Common SQL Commands
[bookmark: _Toc520966104]Different implementations of SQL exist. In this chapter, we use the Microsoft SQL server’s version. Other versions of SQL, such as dynamic SQL or Microsoft Access, are also available. If the reader is familiar with the concept of code laid out here, she can also find on the web the equivalent version of the code in a different language. Learn one and you have almost learned all SQL languages.
[H2] Primary and Foreign Keys
In EHRs, data reside in multiple tables. One of the fields in the table is a primary key, a unique number for each row of data in the table. All of the fields in the table provide information about this primary key. For example, we may have a table about the patient, which would include gender, race, birthday, and contact information, and a separate table about the encounter. The primary key in the patient table is a patient identifier, such as medical record number. The primary key for the encounter table is a visit identification number.
The fields in the patient table (e.g., address) are all about the patient; the fields in the encounter table (e.g., diagnoses) are all about the encounter. The relationships among the tables are indicated through repeating the primary key of one table in another table. In these situations, the key is referred to as a foreign key. For example, in the encounter table, we indicate the patient by providing the field “patient ID.” To have efficient databases with no duplication, database designers do not provide any other information about the patient (e.g., his address) in the encounter table. They provide the address in the patient table, and if the user needs the address of the patient, then she looks up the address using the ID in the patient table. In other words, databases use as little information as they can to preserve space and to improve data analysis time. The “FROM” command specifies which tables should be used.
[bookmark: _Toc520966105][H2] SELECT and FROM Command
SQL reserves some words to be used as its command. These words cannot be used as name of fields or as input in other commands. They are generally referred to as reserve words, meaning these words are reserved to describe commands in SQL. The SELECT command is the most common reserve word in SQL. It is almost always used. Its purpose is to filter data. It focuses the analysis on columns of data (i.e., fields) from a table. Here is the general form of the command:
[LIST FORMAT]
SELECT column1, column2, . . .
FROM table_name;
[END LIST]
SELECT is usually followed by one or more field names separated by commas. The FROM portion of the command specifies the table it should be read from. Here is an example of the SELECT command:
[LIST FORMAT]
	SELECT id
		, firstname
	FROM #temp
[END LIST]
The SELECT command is asking the software to report on a variable or field called “id” and another field called “firstname.” The convention is to start each field name on a new line preceded by the comma, so if the analyst wants to delete a field name, she can easily do so by deleting the entire line. If necessary, the field names can be replaced with *, in which case the SELECT command will list all fields in the table:
[LIST FORMAT]
SELECT TOP 20 * FROM #temp
[END LIST]
The above command tells the server to return the top 20 rows of data from the temporary file titled “temp.” The top 20 modification of the SELECT command is used to restrict the display of large data and enable faster debugging.
	The prefix to a table must include the name of the database and whether it is a temporary or permanent table. To avoid repeatedly including the name of the database in the table names, the name of the database is defined at the start of the code with the USE command:
[LIST FORMAT]
	 USE Database1
[END LIST]
The code is instructing the computer to use tables in database 1. Once the USE command has been specified, then the table paths that specify the database can be dropped.
	In addition, the query must identify the type of table that should be used. The place where a table is written is dictated by its prefix. A prefix of “dbo” indicates that the table should be permanently written to the computer data storage unit, essentially written as a permanent table inside the database. These tables do not disappear until they are deleted.
[LIST FORMAT]
FROM dbo.data
[END LIST]
This command says that the query is referencing the permanent table named “data.” One can also reference temporary tables such as
[LIST FORMAT]
	FROM #data
[END LIST]
The hash tag preceding the table name says that the query is referencing a temporary table. These types of tables disappear when the query that has created it is closed. These data are not written to the computer’s storage unit.
	A prefix of double hash tags, ##, indicates that the table is temporary but should be available to all open windows of SQL code, not just the window for the session that created it. This is particularly helpful in transferring temporary data to procedures, which are parts of code that are in a different location. Thus, a single hash tag prefix indicates a temporary local file, a double hash tag prefix indicates a global temporary file, and the prefix dbo marks a permanent file.
[bookmark: _Toc520966106][H2] Creating Tables and Inserting Values
In this section, we review how CREATE TABLE and INSERT VALUES can be used to create three tables and link them together using SQL. Assume that you need to prepare a database that contains three entities: patients, providers, and encounters. For each of these three entities, we need to create separate tables. Each table will describe the attributes of one of the three entities. Each attribute will be a separate field. Most of the time, there is no need to create a table or insert its values, as the data needed are imported. Imports often include the table definition and field names. Sometimes the tables are not imported and must be created using SQL. To create a table, we need to specify its name and its fields. The command syntax is the following:
[LIST FORMAT]
CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype,
 . . .
);
[END LIST]
The column parameters specify the names of the fields of the table. The “datatype” parameter specifies the type of data the column can hold. Data types are discussed on various online sites, but the most common are variable character, integer, float, date, and text. Always consult the web for the exact data types allowed in your implementation of SQL code, as there are variations in different implementations.
	The patient attributes include first name, last name, date of birth, address (street name, street number, city, state, zip code), and e-mail. First name is a string of maximum size 20. Last name is a string of maximum size 50. These are not reasonable maximum lengths; many names and last names will exceed these sizes, but we are trying a simple example. Zip code is an integer with no decimals. Date of birth is a date. The state field contains the state the patient lives in. The patient’s telephone number could be text. A patient ID (autonumber) should be used as the primary key for the table. When the ID is set to autonumber, the software assigns each record the last number plus one—each record has a unique ID, and the numbers are sequential and with no gap.
	Note that, in exhibit 2.1, two patients are shown to live in the same household and have the same last names. States are entered in different ways, sometimes referring to Virginia by its abbreviation and others times spelling it out. Note how the letter L in McLean is sometimes capitalized and other times not. Note for some phone numbers, the area code is in parentheses and for others not. All of this variability in data entry can create errors in data processing, and these variations must be corrected before proceeding.
[INSERT EXHIBIT; eliminate shading from top row]
EXHIBIT 2.1 Three Rows of Data for Example Patient Table
	First Name
	Last
Name
	Zip Code
	City
	State
	Date of Birth
	Em-mail
	Telephone

	Larry
	Kim
	22101
	Mclean
	DC
	08-Jan-54
	email@test.edu
	703-9934226

	George
	Smith
	22102
	McLean
	Virginia
	09-Sep-60
	email@test.com
	(703) 8884545

	Jill
	Smith
	22102
	McLean
	VA
	01-Aug-89
	test@test.com
	703 993 4226

 [END EXHIBIT]	
Here is a code that can create the patient table. Field names are put in brackets because they contain spaces. As mentioned earlier, the # before the table name indicates that the table is a temporary table that will disappear once the SQL window is closed. The patient ID is generated automatically as an integer that is increased by 1 for each row of data:
[LIST FORMAT]
CREATE TABLE #Patient (
 [First Name] char(20),
 [Last Name] char(50),
 [Street Number] Int,
 [Street] Text,
 [Zip Code] Int,
 [Birth Date] Date,
 [Email] Text,
 [State] Text,
 [Phone Number] Text,
 [Patient ID] int IDENTITY(1,1) PRIMARY KEY
)
[END LIST]
	The provider attributes are assumed to be first name (size 20), last name (size 50), whether they are board certified (a yes/no value), date of hire, telephone entered as text, and e‑mail entered as no longer than 75 characters. Employee’s ID number should be the primary key for the table. Exhibit 2.2 shows the first three rows of data for providers; note that one of the providers, Jill Smith, was previously described in exhibit 2.1 as a patient.
[INSERT EXHIBIT; remove shading from top row]
EXHIBIT 2.2 Three Rows of Data for Example Providers Table
	First Name
	Last Name
	Board
Certified?
	E-mail
	Telephone
	Employee
ID

	Jim
	Donavan
	Yes
	jl@w.com
	3456714545
	452310

	Jill
	Smith
	No
	js@w.com
	3454561234
	454545

	George
	John
	Yes
	g@w.com
	3104561234
	456734

[END EXHIBIT]
In SQL servers, there is no “Yes/No” field. The closest data type is a bit type, which assigns it a value of 1, 0, or null. Also, note again that the provider ID is generated automatically. Here is the code that will create this table:
[LIST FORMAT]
CREATE TABLE #Provider (
 [First Name] char(20),
 [Last Name] char(50),
 [Board Certified] bit,
 [Date of Hire] Date,
 [Phone] Text,
 [Email] char(75),
 [Patient ID] int IDENTITY(1,1) PRIMARY KEY
);
[END LIST]
 [INSERT EXHIBIT; remove shading from top row]
EXHIBIT 2.3 Five Records in an Encounter Table
	ID
	Patient ID
	Provider ID
	Date of Encounter
	Diagnosis
	Treatment

	1
	1
	452310
	10-Jan-04
	Hypertension
	Assessment

	2
	1
	452310
	17-Jan-04
	Heart Failure
	Monitoring

	3
	2
	452310
	10-Jan-04
	Null
	Assessment

	4
	3
	452310
	10-Jan-04
	Hypertension
	Assessment

	5
	1
	454545
	10-Jan-04
	Asthma
	Education

[END EXHIBIT]
The encounter entity is assumed to have the following attributes: patient ID, provider ID, diagnosis (size 50), treatment (size 50), and date of encounter, with encounter ID as a primary key. Each encounter should have its own ID number and is generated automatically. Patient and provider IDs are also in the table, although now they are foreign keys and not primary keys. Exhibit 2.3 shows the first five rows of the encounter table. Here is the code that will create this table:
[LIST FORMAT]
CREATE TABLE #Encounter (
 [Patient ID] Int,
 [Provider ID] Int,
 [Diagnoses] char(50),
 [Treatment] char(50),
 [Date of Encounter] Date,
 [Encounter ID] int IDENTITY(1,1) PRIMARY KEY
);
[END LIST]
	This completes the creation of patient, provider, and encounter tables. Because the encounter table shares the patient ID with the patient table, these two tables are related to each other. The same for provider ID. Each provider has only one row of data in the provider table, but his ID may show many times in the encounter table. Similarly, a patient shows once in the patient table and many times in the encounter table. These relationships are called one-to-many relationships.
The three connected tables constitute a relational database. Exhibit 2.4 shows the relationship among patient, encounter, and provider entities in our hypothetical electronic medical record. In the encounter table, we have two foreign keys: patient ID and provider ID. These foreign keys link the encounter table to the patient and provider tables.
[INSERT EXHIBIT]
EXHIBIT 2.4 Example of Relationships Among Three Tables
[bookmark: Figure1][image: ER diagram for encounters]
[END EXHIBIT]
[bookmark: ProviderTable]	Now that we have created the three tables and their relationships, we can start putting data into them. The syntax for inserting values into fields is provided on the web and is as follows:
[LIST FORMAT]
INSERT INTO table_name (column1, column2, column3, . . .)
VALUES (value1, value2, value3, . . .);
[END LIST]
In this code, columns refer to fields in the table. Values refer to data that should be inserted. For example, to insert the values into the patient table, we would use the following commands:
[LIST FORMAT]
INSERT INTO #Patient ([First Name], [Last Name], [Street Number],[Street], [Zip Code], [Birth Date], [Email], [State], [Phone Number])
VALUES	
('Farrokh', 'Alemi',Null,Null, 22101, '08/01/1954', 'Test2@gmu.edu',Null, '7039934226'),
('George', 'Smith', Null, Null, 22102, '09/09/1960','t@tes.com', Null,'7038884545'),
('Jill', 'Smith', Null, Null, 22103, '01/08/1989', 'test@test.com', Null,'7039934226');
[END LIST]
Did you notice that the street name, street number, and state were entered as null values? Note that null value specification is done without a quote. Inserting a blank is not the same as null value specification. Also note that patient ID was not entered. The software will assign a unique number for the patient ID. It will automatically increase by one each time a new record is entered. The analyst does not need to enter these data. In fact, entering the patient ID will cause an error, as these IDs are selected by the computer. Finally, note that text is in quotes, dates are in quotes, but numbers and null values are not. Putting the null value in quotes will enter it as if it was text, which defeats the purpose.
	The values in the tables for providers and encounters are created in a similar fashion: using the CREATE TABLE and INSERT VALUES commands. Once all three tables have been created, a relational database has been specified and the user can analyze the data across all three tables with Microsoft SQL server Management Studio. Of the three tables, the encounter table may contain millions of records, while the patient or provider tables are usually smaller.
[bookmark: _Toc520966107][H2] Data Aggregation
The GROUP BY command tells the software to summarize the values in a column by subsets of data. The syntax of the GROUP BY command is as follows:
[LIST FORMAT]
SELECT expression1, expression2, . . . expression_n,
 aggregate_function (aggregate_expression)
FROM tables
[WHERE conditions]
GROUP BY expression1, expression2, . . . expression_n
[ORDER BY expression [ASC | DESC]];
[END LIST]
Any fields, or expressions that contain fields, must either be listed in the GROUP BY command or encapsulated in an aggregate function in the SELECT portion of the command. Aggregate functions are identified by reserved words, which database developers write in caps. Aggregate functions include AVG, where all records in the subset of data are averaged. These functions include STDEV, where the standard deviations of all records in the subset of data are calculated. A common aggregate function is COUNT, where all values in the subset are counted. The COUNTIF counts a value if it meets a condition. COUNT(DISTINCT, Field) calculates distinct values in the field. Finally, MAX and MIN functions select the maximum or minimum value for the subset of data. Maximum of a date will select the most recent value, and minimum of a date selects the first date in our subset.
The WHERE and ORDER BY commands are optional. The WHERE command restricts the data to the situation where the stated condition has been met. The ORDER BY command lists the data in a particular ascending or descending order of a set of fields. The following shows an example.
[LIST FORMAT]
USE AgeDx
SELECT top 10 ID, Count(distinct icd9) AS CountDx
FROM dbo.final
WHERE AgeAtDeath is null
GROUP BY ID
ORDER BY Count(distinct icd9) desc;
[END LIST]
The code reports the number of distinct diagnoses for patients who have not died. In FROM and USE parts, the code specifies that the table named “final” from database AgeDx should be used. In the SELECT portion of the code, ID is listed but the field “icd9” is encapsulated in an aggregate function. ID is listed without an aggregation function because it is already part of the GROUP BY command. Any field that is not part of the GROUP BY command must be encapsulated into an aggregate function. Make sure you do so in ORDER BY and SELECT commands. The WHERE command tells the computer to focus on living patients. Note that variables in the WHERE portion of the code do not need to be encapsulated into an aggregate function. The WHERE command is executed before the GROUP BY command. In large data sets, the use of the WHERE command can make GROUP BY computations much faster. The format of COUNT function leads to reporting the number of distinct diagnoses for each patient. The resulting data look like this—each ID is followed by the count of their diagnoses. ID 134,748 has 195 distinct diagnoses:
[INSERT UNNUMBERED EXHIBIT]
ID		CountDx
134748	195
153091	187
244694	187
728678	184
694089	180
571207	179
222254	178
756012	176
636920	176
541352	175
[END UNNUMBERED EXHIBIT]
The GROUP BY command summarizes the fields for subsets of data. If you summarize one field in your query, all listed fields must be summarized. The WHERE command is executed before summarizing the data. If you wish to apply a criterion after summarizing the data, you can use the HAVING command.
[bookmark: _Toc520966108][H2] WHERE and HAVING Commands
The WHERE command allows the analyst to filter the data and select only a specific subset of records in the table. The WHERE command uses one or more criteria. The records or rows in a table are reduced to the rows that meet the criteria. After the reserve word WHERE, the condition is specified. The syntax of the WHERE statement is as follows:
[LIST FORMAT]
SELECT column1, column2, . . .
	FROM table_name
	WHERE condition;
[END LIST]
For example, we might have a table of claims called final. In it we have different International Classification of Diseases (ICD) codes. We want to restrict it to patients who had a claim of injury, a code with the letter E in it. The WHERE command specifies that we should have all ICD9 codes where the letter E appears somewhere inside the code.
[LIST FORMAT]
SELECT [icd9]
	FROM [AgeDx].[dbo].[final]
	WHERE [icd9] like '%E%'
[END LIST]
Examples of the resulting injury codes include IE878.1, IE849.0, and IE878.1. All codes without the letter E in it are ignored. If we want all noninjury codes instead, “not like” can be used:
[LIST FORMAT]
WHERE icd9 not like '%E%'
[END LIST]
The criterion “like 'dia%'” matches any text that starts with “dia-,” such as diabetes, dialog, diagram, and so on. The % sign indicates that wild card matches occur in the text after “dia-.” If we want any text that ends with “-ion,” then “like '%ion'” can be used. The % indicates the wild cards are before “-ion.”
	For another example, suppose we want to list all diagnoses that have occurred after the patient is 65 years old. Then the following code would accomplish the goal:
[LIST FORMAT]
SELECT *
	FROM [AgeDx].[dbo].[final]
	WHERE [AgeAtDx] > 65.0
[END LIST]
In the following code, the computer is instructed to include only records where age at death is less than age at diagnosis. The data are put into the temporary file called “bad data.” Presumably errors in data entry have led to some cases showing visits after death.
[LIST FORMAT]
SELECT id
	, diagnosis
INTO #BadData
FROM dbo.data
WHERE [Age at death]<[Age at Dx]
[END LIST]
The WHERE command must occur prior to the GROUP BY statement. It is executed before grouping the data. The command HAVING is the same as WHERE but executed after grouping is done. In this code, we have dropped the WHERE filter and added a HAVING command:
[LIST FORMAT]
SELECT id
INTO #GoodData
FROM dbo.data
GROUP BY ID
HAVING Min([Age at death])>Max([Age at Dx])
[END LIST]
The HAVING command is executed after the GROUP BY statement. In GROUP BY, we are saying that the data should be grouped by unique persons (i.e., unique IDs). Note that now that we are examining the data by different persons, we no longer can use the fields “age at death” or “age at diagnosis” without aggregation. A person has many diagnoses, and we need to clarify for the code how we want the information to be summarized per person. In this case, we are using the minimum and maximum aggregation functions. In particular, we are taking the maximum value of age at death for each patient and then comparing it to the maximum reported age at various diagnoses.
	The code is selecting all the cases in which the patient dies after diagnoses. The code puts these cases into a temporary file called “#GoodData.” Unfortunately, this code is problematic. What happens for the patient who has not died? This patient will have a null value for age at death, and the minimum of null value is also null value. So the condition of the WHERE statement cannot be verified. Therefore, these patients will be deleted from the good data file, which is a mistake. A large number of patients with good data who have not died will be ignored by this code. It is better to identify only the error among patients who have died.
[bookmark: _Toc520966109][H2] Joining Tables
If the data are in more than one table, the tables must be joined before the data are available to the analyst. There are five different ways that two tables can be joined. The smallest join is the inner join. Left or right join increases the size of the resulting table. Full join also increases the size further and cross join creates the largest resulting table.
[H3] Inner Join
This inner join is the most common join in SQL code. The syntax for inner join is given by the following commands:
[LIST FORMAT]
SELECT column_name(s)
FROM table1 INNER JOIN table2
	ON table1.column_name = table2.column_name;
[END LIST]
Column names in the SELECT portion of the command should be unique across the two tables or must be prefaced with the table name. The FROM command specifies two or more tables with the reserved words INNER JOIN in between the table names. This is followed by the ON statement, which specifies one field from each table. The two fields must be equal before the content of the tables is joined together.
For example, suppose we have two tables described in exhibit 2.5, one containing descriptions of diagnosis codes and another reports of encounters that refer to diagnoses. The description table includes text describing the nature of the diagnosis. The encounter table includes no text—just IDs and codes that can be used to connect to the description table. A join can select the text from the “Dx Codes” table and combine it with the data in the encounter table. An inner join will lead to the listing of all claims in which the diagnostic code has a corresponding text in the diagnosis table.
[INSERT EXHIBIT]
EXHIBIT 2.5 Encounter and Description Tables
	Dx Codes

	Code ID
	Code
	Description

	1
	410.05
	Acute MI of anterolateral wall

	2
	250.00
	Diabetes mellitus without mention of complication

	3
	250.01
	

	4
	410.05
	Acute MI of anterolateral wall

	5
	250.00
	Diabetes mellitus without mention of complication

	7
	410.09
	Acute myocardial infarction of unspecified source

Note: The description for code 250.01 is missing, a common problem.
	Patient ID
	Provider ID
	Diagnosis ID
	Date

	1001
	12
	1
	1/12/2020

	123
	240
	5
	8/13/2012

	150
	2555
	6
	9/12/2021

[END EXHIBIT]
A join statement has two parts. The first part names the two tables that should be joined, and the second part names the fields that should be used to find an exact match. Because table names are often long, to reduce the need to repeat the name of the table for each field, one can also introduce aliases in join statements. In this statement, “d” and “e” are aliases for the [Dx Codes] and [Encounters] tables.
[LIST FORMAT]
SELECT d.*, e.*
FROM [Dx Codes] d inner join [Encounters] e
		ON d.[CodeID] = e.[Diagnosis ID]
[END LIST]
Joining the [Dx Codes] and [Encounters] tables will allow us to see a description for each diagnosis. For example, for patient 1001, we read from the encounters table that the diagnosis ID is 1. Then from the diagnosis codes table we read that the corresponding description is acute myocardial infarction (MI). Diagnosis ID 1 appears in both tables. This is not the case for diagnosis 6, which is not in our description table. In the combined table, the last row for encounters will be dropped because there is no “Diagnosis ID” 6 in the [Dx Codes] table. Of course, this does not make sense. Many data can be deleted in this fashion without the analyst being aware of the deletion. For example, if we want to send the patient a bill for the encounter, and we look up the description of the diagnosis to include in the bill, the combined table will not have a record of the visit—poof, it is gone! With no record, the organization cannot issue a bill. A missing description of a diagnosis can cause havoc. Whenever inner joins are used, the analyst must be careful not to inadvertently delete data. Always check the total number of records in the combined table against the records in the component tables.
 [H3] Left and Right Join
The left and right joins allow the field in one table to be always included and the field from the other table to be included only when it matches. When the two fields do not match, the record is still kept, but there will be a null value in place of the missing record. Following with the previous example, here is the command that will combine the two tables using a right join:
[LIST FORMAT]
SELECT d.*, e.*
FROM [Dx Codes] d right join [Encounter] e
		ON d.[Code ID] = e.[Diagnosis ID]
[END LIST]
All of the records in the encounters table are included. For diagnosis 1 and 5, the description is included from the [Dx Codes] table. For the record 6, a null value is included for the description and for the code. All claims data are still there, but the description of the diagnosis is null when the description is not available. Note that the diagnosis with code ID 6 is listed, even though the description is left null because no corresponding diagnosis exists in the description table.
In the left join, all records from the [Dx Codes] table are included. Diagnoses that do not have an encounter are also included, with the missing encounters having null values. The combined table will list all seven diagnoses. Diagnoses with encounters have the encounters listed. Diagnoses that do not have encounters list null values (see exhibit 2.6).
[INSERT EXHIBIT; PLEASE RENDER AN EXHIBIT BASED ON WHAT YOU SEE BELOW. REMOVE SHADING IN UPPER ROWS, AND LEFT-JUSTIFY CONTENT IN THE STUB COLUMN]
EXHIBIT 2.6 Combined Table After Left Join
[image:]
	[END EXHIBIT]
[H3] Full Join
A full join comprises both left and right joins. Continuing with our example, the code will look like the following:
[LIST FORMAT]
SELECT d.*, e.*
FROM [Dx Codes] d full join [Encounter] e
		ON d.[Code ID] = e.[Diagnosis ID]
[END LIST]
In exhibit 2.7, the encounters of patient 1001 and patient 123 are listed for diagnosis codes ID 1 and 5. Diagnosis code IDs 2, 3, 4, and 7 are included but no encounter information is listed for these codes. Null values are provided. For diagnosis ID 6, the encounter information is listed but the description is left null. Now the combined table includes null values in both descriptions and encounters. Full joins are helpful when a complete set of primary keys of both tables is needed in later steps of the analysis.
[INSERT EXHIBIT; PLEASE RENDER AN EXHIBIT BASED ON WHAT YOU SEE BELOW. REMOVE SHADING IN UPPER ROWS, AND LEFT-JUSTIFY CONTENT IN THE STUB COLUMN]
EXHIBIT 2.7 Combined Table after Full Join
[image:]
[END EXHIBIT]
[H3] No Join (Cross Join)
In cross join, all records of one table are repeated for each record of the other table. The code looks like the following (the ON portion of the join is no longer needed):
[LIST FORMAT]
SELECT d.*, e.*
FROM [Dx Codes] d cross join [Encounter] e
		ON d.[Code ID] = e.[Diagnosis ID]
[END LIST]
A cross join does not specify that any fields should match across the two tables. The combined table for just the first record of the encounter table will include all six descriptions. The combined table for the second record of the encounter table will also include all six descriptions. The combined table for the third encounter will also include six records, each having a different description. Cross join increases the data size considerably. In our example of three encounters and six descriptions, cross join created a combined table of 3 × 6, or 18 records. In massive data, you will never see cross joins. Doing so would be computationally foolish. In smaller data, one might do a cross join but aggressively reduce some combinations using the WHERE command.
[bookmark: _Toc520966110][H2] Text Functions
A number of functions are available in SQL commands that allow users to calculate the value of the new variable. These functions include arithmetic operations such as add or divide, text operations such as concatenate, date operations such as days since, and logical operations such as maximum and if. In this section we focus on text functions.
Many fields in EHRs contain free text that is not classified into coded variables. For example, medical and nursing notes are typically entered as open text. The names of medications are typically presented as text fields. If the healthcare organization wants to report the dose of the medication, users may need to write a code to analyze the name and extract the dose. Analysis and manipulation of free text is an important part of SQL.
Many functions are available. The CHARINDEX and the PATHINDEX functions return the location of a substring or a pattern in a string of letters and numbers. LEFT and RIGHT functions extract a substring, starting from the first or last character of the field. LEN and DATALENGTH functions return the length of the specified string—DATALENGTH in bytes and LEN in characters. LOWER and UPPER functions change a string to lower or upper case, so it is easier to read. LTRIM and RTRIM functions remove leading or trailing spaces from a string. SPACE adds it in. REPLACE switches a sequence of characters in a string with another set of characters, and SUBSTRING extracts a string from a text field. CONCAT, or the simple use of a plus sign, attaches two or more strings together. The STUFF function replaces a sequence of characters with another, starting at a specified position. The exact syntax and meaning of various SQL functions are available by doing a key word search on the internet. Here we will focus on syntax for CONCAT and STUFF.
The CONCAT function joins one or more strings, so that the end of one is the beginning of another. Think of it as a relay run, with each stage of the run being a string. You may also think of it as a way of adding text to other text. The syntax of the CONCAT function starts with the reserve word CONCAT:
[LIST FORMAT]
CONCAT(string1, string2, . . . , string_n)
[END LIST]
The parameters of the CONCAT function are specified in parentheses as columns of strings separated by commas. Alternatively, one could simply write the strings and put a plus sign between them:
[LIST FORMAT]
	string1 + string2 + string_n
[END LIST]
Note that all fields must be text, and numbers must be converted to text. At times this may be confusing. You may see numbers that have a numerical value, but the computer sees them differently—numbers can be text just as much as letters are. For example, consider a code in which we want to attach three fields together. Each field is a binary text variable containing 1 or 0. The first field contains “M” for male and “F” for female (see exhibit 2.8). We use the case function to replace these values with 1 or 0, entered as text. The second field is inability to eat, which is already in text format, though it shows a number. The third field is inability to sit, which also contains a text binary field. The plus sign instructs the computer to attach the two fields.
[INSERT EXHIBIT]
EXHIBIT 2.8 Combining Three Text Fields Using CONCAT
	[LIST FORMAT]
, CASE WHEN Gender='M' THEN '1' ELSE '0' END
 + [Unable to Eat]
 + [Unable to Sit]
AS All
[END LIST]

	Gender
	Unable to Eat
	Unable to Sit
	All

	M
	1
	1
	111

	M
	1
	0
	110

	M
	0
	1
	101

	M
	0
	0
	100

	F
	1
	1
	011

	F
	1
	0
	010

	F
	0
	1
	001

	F
	0
	0
	000

[END EXHIBIT]
After the code is executed, we have a new column of data titled “All” with three 0 or 1 text entries, each indicating whether the patient is male, whether the patient is unable to eat, and whether the patient is unable to sit (see the right-hand column in exhibit 2.8). This concatenated new field contains the information in all three variables and thus may be easier to process. For example, using GROUP BY All will have the same result as grouping on all three variables separately. The CONCAT function has joined the values of three fields into one field, each starting where the other left off.
The STUFF function is also useful for manipulating text in SQL. The STUFF function first deletes a sequence of characters of a certain length from the field and then inserts another sequence of characters into the field, beginning at the start of deletion. The deleted length and inserted string do not need to be of the same length. The syntax of the STUFF function is the following:
[LIST FORMAT]
STUFF(string1, start, length, add_string)
[END LIST]
There are four parameters in the STUFF function and all four are required and must be specified before it works. The STUFF function starts with the reserve word “stuff,” and the function parameters occur inside parentheses. The first entry is the field where we want to make the change. This field must be a text field. The second entry is an integer or an expression that produces an integer. The integer indicates where in the string field we would like to make the change. The third parameter of the function is the length of characters that we want to delete. The last parameter in the STUFF function is a string, which we wish to insert at the start of location of the deletion. Here is an example:
[LIST FORMAT]
, Stuff('I am happy', 5, 1, ' not ')
[END LIST]
We start with the string “I am happy.” The fifth character is the space between “am” and “happy.” The code tells the computer to delete 1 character starting with the space. So essentially we are just deleting the space between “am” and “happy.” In the last parameter, we specify what should be inserted starting at character 5. Instead of the deleted space, we insert the new string “not” with leading and trailing spaces. The STUFF function has changed “I am happy” to “I am not happy.” Here is another example:
[LIST FORMAT]
, Stuff(All, 2, 1, '-')
[END LIST]
In this code, we are instructing the computer to replace the second character in the string variable All (see exhibit 2.8) with a dash. The All variable was a string variable, containing binary indications of whether the patient was male, unable to eat, or unable to sit. This code eliminates the “unable to eat” information from the All variable.
	STUFF is a difficult function to work with, as you need to know exactly which character in the field should be manipulated, as well as the length of the string you must delete. You also must know the exact text of the strings that should be “stuffed” into the field. But once you know this information, you can manipulate sentences and words within them. You can cut out one word and insert another.
We should also consider the IIF function. The IIF function is usually thought of as a logical test of a variable, but it can also be used to check whether certain words are in a text field. The following is an example of an expression for computing a new field called “Diagnosis” using the IIF expression:
[LIST FORMAT]
	, IIF (ICD9!Description like '%diabetes%', 'Diabetes', 'Other') AS Diagnosis
[END LIST]
The % sign is a wild card that allows one or more characters to be matched to it. This expression tells us that if the field “Description” in the table “ICD9” contains the word “diabetes,” the system will assign to the field “Diagnosis” the value “Diabetes”; in other situations, it will assign to the field “Diagnosis” the value “Other.”
[bookmark: _Toc520966111][H2] Date Functions
In EHRs, all entries are date- and time-stamped. In analysis of data, dates play an important role. For example, diseases that follow a treatment might be considered complications, and diseases that precede the treatment might be considered a comorbidity. The same disease at two different times has different implications for the analysis. Calculating the age of a patient requires finding the difference between birth date and current date. Calculation of survival rates requires comparison of date of death and date of cancer treatment. In all of these calculations, we are examining dates and manipulating them. To facilitate the manipulation of dates, SQL has several date functions. In this section, we describe several functions used for manipulation of dates and consider three of the many date functions: GETDATE, DATEPART, and DATEDIFF.
One of the most common functions is the GETDATE function. This function produces the current date. The function has no arguments in the parentheses. If we execute the command “SELECT GETDATE(),” we get the current date. A date is typically reported in month, day, year, hour, minutes, seconds, and nanoseconds.
The DATEADD function increases or decreases a starting date by a fixed time interval. The syntax of the date function will look like this:
[LIST FORMAT]
DATEADD (Interval, Number, Start_Date)
[END LIST]
The interval indicates whether we are adding hours, days, month, quarter, or year. A twice-repeated h, d, m, q, or y indicates the interval. For example, dd indicates that we want to add days, and yy indicates that we want to add years. The number indicates how many intervals should be added. The last parameter gives the starting date and time. The code for adding seven—a week from today—is the following:
[LIST FORMAT]
	SELECT GETDATE() AS [Today]
, DATEADD(dd,7,GETDATE()) AS [This Week]
[END LIST]
From examination of the output of these two lines of code, we can see that the DATEADD function added seven days to GETDATE for the current date.
	The DATAPART function produces a part of the date. It has two parameters. Here is an example code for obtaining the year part of the current date:
[LIST FORMAT]
SELECT DATEPART(yy,GETDATE())
[END LIST]
The first parameter selects which part is needed. If we put in yy, we are indicating that we want to get the part of the date that is the year. Other parameters are also possible. We could get the days (dd), the hour (hh), the seconds (ss), the month (mm), the quarter (qq), and so on. The second parameter indicates the column where the date can be found. In the example code, we are dissecting the current date into its parts and reporting the year. The output of DATEPART is always an integer. So, the output for the month of June will be 6 and not the text word “June.”
	The DATEDIFF function has three arguments—datepart and two expressions involving dates. It employs the following syntax:
[LIST FORMAT]
	DATEDIFF (datepart, expression1, expression2)
[END LIST]
The datepart indicates the units in which the difference should be expressed. It can be any unit, from years or all the way down to nanoseconds. Expression 1 and expression 2 are expressions involving manipulations of columns of dates, times, or combined dates and times. For example, consider the following calculation of age of a patient born on September 8, 1954. It expresses the difference between date of birth and current date as age in units of years.
[LIST FORMAT]
	SELECT DATEDIFF(yy,'1954-9-8', GETDATE()) AS Age
[END LIST]
If today is June 14, 2018, running this select command results in an estimated age of 64. But this is not really correct. A common error in date calculations is that they are carried out at the unit specified and all the rest of the information is ignored. Here, we are taking the difference of current year 2018 and year of birth of 1954 and ignoring that this patient will not be 64 until September 8, 2018. He is really 63 and 6 months right now, but the SQL is calculating his age as 64 years. Date difference is always calculated at the unit level specified and the rest of the data are ignored, so one second in the next year will look like one more year, if we are examining the difference yearly.
	Another common problem with date calculations is the format of the column. Many columns are not in proper date format and must be converted before calculations can be done. Keep in mind that the entry may look like a date, but the computer may have read it as text. Consider the following command:
[LIST FORMAT]
	SELECT '5/1/2013 9:45:48 AM' AS [Date as Text]
[END LIST]
Though the entry in quotes looks like a date, it is a text field, which we know because it does not contain any nanoseconds and is in single quotes. This text needs to be converted. But conversion is not so easy. SQL prevents conversions from text to date, precisely because these conversions are fraught with data distortions. The entry may be ambiguous. Consider 5/1. Is this May 1 or January 5? Worse yet, it may contain entries that do not make sense (e.g., a 32-day month). It may have a misspelled month or even an illogical entry, such as the words “I do not know.” Before conversion, the analyst must make sure that all values are sensible for conversion from text to a date.
	The CONVERT function converts an expression from one data type to another data type:
[LIST FORMAT]
	CONVERT(data_type(length), expression, style)
[END LIST]
The command requires the analyst to specify a data type. Numerous data types are allowed, including date, variable character, integer, or float. Length is an optional command needed mostly for variable character data types. A variable character data type is a text field with a fixed length. Expression is the column or manipulation of a column of data that needs to be converted. Style is optional and there are many different fixed style formats. Styles 100 and 101 are of particular interest, as these are common formats for dates—a complicated text style. If we want to convert text to a date, we need to do it in two steps. We first covert the text into variable characters, here of a length 30 using style 101. This truncates the text field to 30 characters, something more manageable by the computer. Style 101 also reads the date correctly. Here is how the code looks like after these two conversions:
[LIST FORMAT]
SELECT CONVERT(datetime,
		CONVERT(varchar(30), '5/1/2013 9:45:48 AM', 101)
			AS [Date in Date Format]
[END LIST]
The result is a reformatted text as date. Note that nanoseconds are included in the date/time format that the computer maintains. The computer records all dates with nanoseconds, now set to zero because it was missing in the text entry. The hard part of working with date functions is the conversion of string or text input into date formats.
[bookmark: _Toc520966112][H2] Rank Order Function
RANK and RANK_DENSE functions order the records based on the order of values in one or more columns. For example, we can find out whether a patient has been repeatedly admitted to the hospital for the same diagnosis, a situation that happens when the earlier treatment has not worked and the patient is readmitted for further treatment. RANK differs from the RANK_DENSE function in how the next rank is assigned when two or more records have the same rank. If two records have the same rank, RANK function skips the next rank number. RANK_DENSE does not. For example, if two records are ranked to occur at the same order, at rank 1, then the rank function will assign rank 1 to both of them and rank 3 to the next record. It skips rank 2. In contrast, RANK_DENSE will rank the first two at 1 and start the next one at 2.
	In exhibit 2.9, we see an example of what is happening to patient 10. He has received diagnosis 276.1, hyposmolality, repeatedly at different ages. Two of these diagnoses are reported for the same age. Hence, we see them ranked the same way. We see rank 1, then rank 2; next, diagnoses are both ranked 3 because they co-occur, now rank 4 is missing and we jump to rank 5. RANK_DENSE will not have the skip in ranks.
[INSERT EXHIBIT]
EXHIBIT 2.9 Assigned Order Using RANK and RANK_DENSE Functions
	ID
	Inpatient Diagnosis
	Age at Diagnosis
	RANK
	RANK_DENSE

	10
	I276.1
	63.16
	1
	1

	10
	I276.1
	64.08
	2
	2

	10
	I276.1
	64.25
	3
	3

	10
	I276.1
	64.25
	3
	3

	10
	I276.1
	64.33
	5
	4

	10
	I276.1
	64.66
	6
	5

	10
	I276.1
	64.75
	7
	6

[END EXHIBIT]
There is, of course, no difference between rank and rank dense, if no two records have the same order. This can be guaranteed by grouping the field used to set the order of the records, a first step that often should be done before using rank functions. When no two records have the same order, no two have the same rank.
	For example, patients may have the same diagnosis on the same date of hospital admission. Once they are seen by one doctor, and at a different point by another clinician. Ranking these diagnoses as two different times with the same diagnosis is a mistake. In this situation, it makes sense to delete the repetitions of the diagnosis for the same person at the same time. This helps make the ranking task more efficient and more sensible. Here is the syntax for the rank function:
[LIST FORMAT]
	RANK () OVER ([<partition_by_clause>] <order_by_clause>)
[END LIST]
The syntax requires specification of the OVER clause, which requires us to specify what field or fields should be used to order the ranks. The PARTITION clause is optional and describes whether the rank order should restart in subgroups of the records. Here is an example of the RANK command:
[LIST FORMAT]
DROP TABLE #Temp
USE AgeDx
SELECT ID, icd9, AgeAtDx
, RANK() OVER (PARTITION BY id, icd9 ORDER BY icd9, AgeAtDx) AS [Repeated Dx]
INTO #Temp
FROM dbo.final
WHERE ID=10
GROUP BY ID, icd9, AgeAtDx
Select * FROM #Temp ORDER BY ID, icd9, [Repeated Dx]
[END LIST]
For computational ease, we can use the WHERE command to filter the data for only the person with an ID of 10. The GROUP BY command removes duplicates, so RANK and RANK_DENSE produce the same results. The GROUP BY command will delete any record for the same patient having more than one instance of the same diagnosis at the same age. Otherwise, these steps will take a long time to carry out. The RANK command has two clauses specified. The ORDER BY portion of the command says that we want to set the order based on diagnosis and age at which it occurs. The PARTITION BY portion of the command says that we want to organize the ranks to start from 1 for each individual and each diagnosis of the patient.
	Exhibit 2.10 provides a portion of the results. In the first row, at 64.66 years, the patient was hospitalized with diagnosis 041.89, which is an unspecified bacterial infection. This infection did not repeat, so the rank does not exceed 1. The next disease is 112.0, which is candidiasis of the mouth. This disease also does not repeat either. The situation is different for hospitalization with diagnosis 253.6, which is “Other disorders of neurohypophysis.” The patient was hospitalized for this disease three times, first at the age of 64.25, then at 64.75, and later at 65.25. We see that this disease is ranked 1, 2, and 3 for repetition. Repetition also occurs for disease 272.4, “Unspecified hyperlipidemia.”
[INSERT EXHIBIT]
EXHIBIT 2.10 Output for Rank of Diagnoses for Person with ID 10
	ID
	icd9
	AgeAtDx
	Repeated Dx

	10
	I041.89
	64.66
	1

	10
	I112.0
	64.25
	1

	10
	I253.6
	64.25
	1

	10
	I253.6
	64.75
	2

	10
	I253.6
	65.25
	3

	10
	I263.9
	64.91
	1

	10
	I272.4
	64.25
	1

	10
	I272.4
	65.25
	2

	10
	I275.2
	64.91
	1

	10
	I275.2
	65.58
	2

[END EXHIBIT]
[H1] Cleaning Data
[bookmark: _Toc520966113][H2] Dead Man Visiting
Before the data are merged from different files, it is important to exclude records of patients that are impossible. For example, sometimes a patient is reported to have visited a clinician after death. Clearly this is not possible. In rare situations some visits occur after death—for instance, the transport of a dead patient from home to hospital, autopsy, or postmortality services to family members. The most common reason for reported encounters with the healthcare system after death is the incorrect entry of date of death by a clinician or clerk. Such errors rarely occur if the organization uses the Centers for Medicaid & Medicare Services (CMS) Death Master List; in recent years, however, CMS has decided against sharing this master list because of identity theft. Therefore, organizations have to enter the date of death in their medical records by hand, and we may be left with an erroneous date of death. One of the first steps in cleaning the data is to identify patients whose date of death occurs before the date of various outpatient or inpatient encounters. The code for identifying such discrepancies may look as follows:
[LIST FORMAT]
DROP TABLE #nonZ
SELECT ID
INTO #nonZ
FROM dbo.data
GROUP BY ID
HAVING (Min(AgeAtDeath)>=Max(AgeAtDx) OR Min(AgeAtDeath) is null)
[END LIST]
In this code, the SELECT ID command tells the system that we are interested in finding the ID of the patients. Note that, because this query has only one table, we do not need to identify the source of the ID field. If two tables were joined, it would be necessary to specify the source of the data so there is no room for confusion. Thus, we should have used “SELECT dbo.data.ID.” The INTO command says that we should include these IDs in a file called #nonZ. The “FROM dbo.data” command says that we want to get this information from a permanent table called data, which includes both “Age at death” and “Age at diagnosis” fields. The HAVING command says that two conditions will be used to include patients in our new file. Either the minimum age at death must be less than the maximum age at diagnosis, or the minimum age at death must be null. It is important to include the patients with no age-at-death entry because we want to include patients who have not died. GROUP BY ID says that we want to see only one value for each ID, no matter how many times the person’s diagnosis occurs at a later time than his death.
One alternative is to use the WHERE command instead of the HAVING command. Then the code will look like this:
[LIST FORMAT]
DROP TABLE #nonZ
SELECT ID
INTO #nonZ
FROM dbo.data
WHERE AgeAtDeath >= AgeAtDx
or ageatdx>0
GROUP BY ID
[END LIST]
This approach is not reasonable. We would delete the erroneous dates but not eliminate the entire record of the patient. Given that problems with date of death and date of birth affect age at the time of all visits, the entire record should be eliminated.
[bookmark: _Toc520966114][H2] Visits Before Birth
If birthdates are wrong, patients may show visits prior to birth. In these situations, it is important to identify the person and exclude the entire record of the person. We can add the condition that age at diagnosis needs to be a positive number at the end of the previous code.
[LIST FORMAT]
DROP TABLE #nonZ
SELECT Id
INTO #nonZ
FROM dbo.data
GROUP BY ID
HAVING (Min(AgeAtDeath)>=Max(AgeAtDx) OR Min(AgeAtDeath) is null)
AND Min(AgeAtDx)>0
[END LIST]
This code says that we should select the ID of the person, one per person. We will drop the patients who have one or more diagnoses prior to birth. We identify the patients by having a diagnosis of 0 or a negative age. Once we have the ID of patients whom we want to include in the analysis, we need to merge these data with the dbo.data to select all the remaining fields.
[bookmark: _Toc520966115][H2] Patients with No Visits
In many studies, we are looking for a patient’s encounters with the healthcare system. Sometimes the entries in a medical record are not for real people, as when a test case was entered. These patients are typically identified with primary keys that start with ZZZ. Such records must be excluded before proceeding.
	For some patients, there are no encounters with the healthcare system during the study period. This absence creates doubt about whether these patients are real or simply healthy. If the period is long—say, a decade—then at least some encounters are expected. In the absence of any encounter, it is important to explore why this may be occurring. For example, the patient may be using the facilities to pick up his medications but not for receiving medical services. Other explanations are also possible. It is important to count how many patients have no encounters and find out what are the most likely explanations.
[bookmark: _Toc520966116][H2] Imputing Missing Values
Missing values are another common error. Keep in mind that the medical record is the report of an encounter. Patients may have encounters that are not reported, as when the patient meets the clinician in a social gathering. A question arises regarding what should be done with information not reported in the EHR. The answer depends on what the information is. For example, let us think through what should be done when the patient has no report of having diabetes. One possibility is that the patient was not diagnosed with diabetes, in which case we can assume that the patient does not have diabetes. In this case, we will set the value of the field diagnosis to 0:
[LIST FORMAT]
	IIF(Diabetes1 is null, 0, Diabetes1) AS Diabetes2
[END LIST]
This command says that if the field Diabetes1 is null, replace it with 0 and otherwise assign it the value in Diabetes1 and rename the new field Diabetes2.
	One general strategy for imputing missing values is to assume that missing values are the most common value. Thus, if the diagnosis of diabetes is missing, and most patients in our study do not have a diabetes diagnosis, then the best approach may be to assume that the patient does not have it. In the emergency room, however, a missing diagnosis may indicate insufficient time to establish it. In one study of an emergency room, for example, Alemi, Rice, and Hankins (1990) found that missing values of myocardial infarction (heart attack) diagnosis were highly correlated with mortality. In this situation, it is not right to assume that missing diagnoses indicate normal condition.
	Treatment is usually reported when given. It may be safe to assume that if a treatment is not reported, it was not given. Again, it may be important to know whether patient conditions precluded giving the treatment.
	Sometimes when a value is missing, the best approach is to measure it from its nearest values. For example, if blood pressure is missing in the second quarter of the fiscal year, it may make sense for the statistician to estimate it from the third quarter. Other times we can impute the missing value from other available data. Thus, we can impute that the patient is diabetic if she is taking diabetic medication or if hemoglobin A1c levels (a marker for diabetes) indicate diabetes. Exceptions occur, especially if medications are used to impute diagnosis. Some prediabetic patients take Metformin, a drug also used for diabetes, so indicating that those patients had true diabetes would be erroneous. Physicians may prescribe a medication for a reason different from the typical use, so if the analyst sees the medicine in the database, he may think it indicates a diagnosis when it does not. In these situations, he would need to understand whether the rest of the patient’s record supports the imputation.
[bookmark: _Toc520966117][H2] Out-of-Range Data
One way to have more confidence in data in medical records is to find out whether the data are out of the expected range. A patient whose age is more than 105 years or fewer than 18 may not be reasonable for our study. In the following code snippet, we use the BETWEEN function to check for the range of the age:
[LIST FORMAT]
DROP TABLE #InRange
SELECT ID, VisitId
INTO #InRange
FROM dbo.data
WHERE AgeAtDx between 18 and 105
	and AgeAtDx is not null
[END LIST]
Out-of-range analysis should be done on all variables, not just dates. Note that in this code, the entire record is not excluded. Only the specific visit with out-of-range age is excluded. Even though we do not show it here, the visit and patient IDs should be used to merge the calculated temporary file with the original data, so that all relevant fields, not just IDs, are available for analysis.
[bookmark: _Toc520966118][H2] Contradictory Data
Inconsistencies tell us a great deal about our data. Seemingly impossible combinations may occur. It is important to examine whether these occurrences are at random and whether there are any justifications for it. For example, consider a pregnant male. This record is not reasonable. The following is a code intended to select all data except male subjects who are pregnant:
[LIST FORMAT]
SELECT Id
FROM dbo.data
WHERE Not (Gender = 'Male' and Pregnant = 'Yes');
[END LIST]
	Of course, inconsistent data do not arise only with impossible combinations. Some level of inconsistency may arise among variables that often co-occur. Very tall people may be unlikely to be in our sample even if their height is possible. If we see a body weight of more than 400 pounds, we wonder if the patient’s weight was taken while he was on a motorized chair. Even among probable events, inconsistent data should raise concerns about quality. When all fields point to the same conclusion, there is little concern. When some fields suggest the absence of an event and other fields suggest that the event has occurred, the analyst’s concern is raised, often requiring human chart reviews or a conversation with the patient. Consider an illustrative example.
	The Agency for Healthcare Research and Quality (AHRQ) has come up with several measures of quality of care using EHRs. One such measure is the frequency with which medication errors occur. When a medication error occurs, clinicians are required to indicate it in the record. However, sometimes this is not done. Sometimes, an activity is done but not recorded in the right place. Thus, the AHRQ’s patient safety indicator may rely on the frequency with which heart failure patients are discharged with beta blocker prescriptions (an evidence-based treatment). However, what if the doctor put the prescription in the note, but the patient filled the prescription while on a trip to a child’s home in a different state? Such pharmacies would not be monitored in the healthcare organization’s medication reconciliation files, and in such situations the analyst would undercount the number of beta blockers. The variation in reporting is one reason AHRQ recommends that expensive chart reviews be done to verify under- or over-reporting of patient safety issues. Some chart reviews, however, are not needed if other indicators are consistent with the reported event.
	To see if variables in the EHR are consistent with the reported event, we predict the event from other variables. Next, comparison of predicted and observed values indicates the extent to which data are consistent. For example, one would expect that patients who are older, who have long hospital stays, who have multiple medications, and who have cognitive impairments are more likely to fall. We can compare the predicted probability of fall to an actual observed fall. If there is negligible probability of fall and the patient has fallen, then something is not right. If there is high probability of fall and we see consequences of a fall (prolonged hospitalization), perhaps the patient has fallen and the EHR is not correct. Exhibit 2.11 shows hypothetical results. Chart reviews may need to be done when low-probability events are reported or high-probability events are not reported.
[INSERT EXHIBIT]
EXHIBIT 2.11 Reports Inconsistent with Probability of the Event
	
	Probability of Fall

	
	Low
	Medium
	High

	Fall reported
	Not consistent
	
	Consistent

	Fall not reported
	Consistent
	
	Not consistent

[END EXHIBIT]
	A similar test of consistency can be applied to patient-reported outcomes such as pain levels (see exhibit 2.12). Obviously, pain is a subjective symptom. Some patients have more tolerance for pain than others. Some patients treat pain with medications, while others with the same level of pain refuse medication. One can predict the expected pain level from the patient’s medical history, the contrast expected, and reported levels.
When patient-reported pain levels do not fit the patient’s medical history, additional steps can be taken to understand why. For example, the patient’s medical history can be used to predict the potential for medication abuse. If the patient is at risk and is reporting inconsistent pain levels, then the clinician can be alerted to the problem and explore the underlying reasons.
[INSERT EXHIBIT]
Exhibit 2.12 Expected and Patient Reported Pain Levels
	
	Expected Pain Level

	
	Low
	Medium
	High

	Patient Reported Levels
	Low
	Consistent
	
	Not Consistent

	
	Medium
	
	
	

	
	High
	Not Consistent
	
	Consistent

[END EXHIBIT]
[bookmark: _Toc520966119][H2] Inconsistent Format
In many situations, data are copied into (read into) the database from an external source with the wrong formatting. In a database, the format of the data must be set before reading the data. There are many different types, including integer, text, float, date, and real. The CAST and CONVERT commands allow the user to reassign the type of data. For example, if the field Age is read as text instead of a numerical value, then the following command will cast it as a numerical float (a number with a decimal):
[LIST FORMAT]
	, CAST (Age as Float) AS Age
[END LIST]
For example, ages 45.5 and 47.9, which may have been previously read as text, are now a number with a decimal. In converting a field from text to number, a problem arises with text entries such as the word “Null.” This is not recognized as a null value but as a piece of text with four letters. A simple CAST will not know what to do in these situations. Instead one should use a code something like the following:
[LIST FORMAT]
	, IIF(Age=’Null’, Null, CAST(Age as Float)) AS Age
[END LIST]
The command says that if (shown as IIF) the field Age has a text field with the text “Null,” then the new field should treat this value as a true null value. Otherwise, it should cast the Age field as a float.
[H1] Should Data Be Ignored?
[bookmark: _Toc520966120][H2] Keep Rare Predictors
Discarding predictors that rarely occur is a common practice in statistics. The logic is that these rare predictors occur too infrequently to make a difference for an average patient. In EHRs, we have thousands of rare predictors. Ignoring one has a negligible effect, but ignoring thousands of rare predictors will have a large impact on the accuracy of predictions for the average patient. Furthermore, ignoring these predictors will reduce accuracy in the subset of patients who experience rare diseases. Therefore, I do not recommend the exclusion of rare predictors. This policy yields a statistical model with thousands of variables, most of which occur in rare situations. The model will be accurate, but difficult to manage.
[bookmark: _Toc520966121][H2] Keep Obvious Predictors
A related issue is whether we should keep obvious predictors. For example, as we predict diabetes, a patient with diabetic neuropathy is clearly diabetic. There is no need to predict whether the patient has undiagnosed diabetes or will have diabetes in the future; clearly, he is diabetic. Some investigators argue that nothing is gained by using a model that makes accurate predictions in obvious situations. I disagree. These obvious cases should be kept in the model for two reasons: (1) errors in these cases will lead to clinicians ridiculing the model and abandoning its use; and (2) in EHRs, crucial information may be missing and obvious predictors can adjust for missing values. In our example, it may be that a patient is hospitalized with diabetic neuropathy, but for this patient no diabetes was recorded. Diabetes is usually observed in an outpatient setting. It is possible that the doctor who sees this patient does not use the same EHR software, and therefore the outpatient mention of diabetes is missing. Keeping obvious predictors helps the system address missing information.
[bookmark: _Toc520966122][H2] Drop Diagnoses That Occur After the Outcome?
Statisticians are concerned with outcome prediction by use of a variable has not occurred until after an outcome. On the surface, such predictions look tautological—they consist of useless repetition. For example, if we want to predict whether the patient will develop diabetes, observing that they suffer from the complications or consequences of diabetes is tautological. Such predictors should not be part of the analysis. At the same time, we often want to detect whether a patient has already developed an illness. In these situations, we detect the illness by its consequences. Therefore, if the purpose is detection, the analyst should include consequences of the disease.
For example, undiagnosed diabetes, or diabetes not previously reported in the EHR, can be detected by seeing whether the patient has complications of diabetes, such as renal illness. Detection and prediction use different sets of predictors. In predictive models, we are looking forward to establish the risk of future events. In these models, only predictors that occur before the outcome can be used. In detection, we are looking backward to see if a diagnosis was missed, and in these models, diagnoses before and after the outcome of interest can be used.
	When evaluating predictive models, the practice is to divide the data into two sets: training and validation. The parameters of the predictive model are estimated in the training-data set, but the model is tested in the validation set. In the training set, all diagnoses are included as predictors of the outcome. This means that diagnoses that occur after the outcome or before the outcome are included in estimating the association between the predictor and the outcome. Validation is different. Here we want to rely only on predictors that occur prior to the outcome. Therefore, it is important to exclude any diagnosis that occurs after the outcome. This information is available in the EHR, but not in real life. In real life, we are making a prediction about the likelihood of the outcome before the outcome has occurred. Therefore, we do not have access to any diagnosis or other information that arises after the outcome.
[bookmark: _Toc520966123][H2] Drop Complications?
Sometimes the available data are reasonable but should be ignored in the context of the analysis planned. If we are studying the impact of treatment on survival, statisticians should drop complications from multivariate models. Complications are on the causal path from treatment to survival. Including them will distort the relationship between treatment and survival. In EHRs, complications are diagnoses that occur after treatment. Before treatment, the same diagnosis is considered medical history, and at the time of treatment it is considered comorbidity. This requires us to drop some of the diagnoses and retain others according to whether they occur before or after treatment.
	In exhibit 2.13, because the patient had an infection and was overweight, a large dose of antibiotics was given, which distorted the microbes in the patient’s gut. The patient developed diabetes. If we keep diabetes in our multivariate models, the effect of antibiotics on survival will be distorted. In these situations, we want to keep comorbidities (i.e., overweight and infection) but not the treatment complication, which is diabetes.
[INSERT EXHIBIT; render in gray scale, and make ovals transparent (no shading), but retain “highlighting” around arrows and “Diabetes” oval]
EXHIBIT 2.13 Diabetes as a Complication of Treatment
[image:]
[END EXHIBIT]
Keeping comorbidities but not treatment complications requires a code that drops diagnoses that occur after treatment. In this code, we remove complications of treatment and retain all diagnoses that occur prior to, or at the time of, the treatment. In this code, the WHERE command states that the age of diagnosis should be less than or equal to age at start of treatment.
[LIST FORMAT]
SELECT ID, Diagnosis
FROM dbo.data
WHERE AgeAtDX <= AgeAtTreatment
[bookmark: _GoBack]GROUP BY ID, Diagnosis
[END LIST]
[bookmark: _Toc520966124][H1] Time Confusion: Landmark, Forward, and Backward Looks
Data in EHRs are time-stamped. These dates and hours provide a chronology of events that have occurred in encounters with the healthcare system. Naturally, events for different patients occur at different times. For the purpose of analysis, we need to start time at a landmark and count progression in time from this landmark. This is called landmark time to distinguish it from chronological time.
	For example, suppose we want to evaluate the impact of a treatment on patients’ outcomes. For some patients, the treatment occurs in January, and for others a month, a year, or a decade later. Once the treatment occurs, no matter the timing, the outcome must be evaluated in a predetermined follow-up period after treatment. During this period, the outcome of interest may or may not occur. To calculate the impact of a treatment on outcome, we would need to set the chronological time of treatment to zero at the date and time of the patient’s treatment. In all calculations, the analysis uses time from the landmark event and not the chronological time.
	Data from EHRS, which track a patient from birth to death, can be used in different ways to design a study.. One approach is a retrospective case/control design, in which patients with and without an intervention are contrasted. In this approach, the statistician defines the cases (exposed to disease) and controls (not exposed to disease) and looks backward to see whether patients were exposed to risk factors. Another approach is a cohort design, in which a group of patients are followed over time. In such a study, the user selects a group of patients and looks forward in time to see if they have developed a specific outcome or disease. Looking forward for data is typically done prospectively. In an EHR, where you can see the same patient over time, you can look forward using existing data.
Exhibit 2.14 is a visual depiction of a cohort design. The outcomes are also observed in the past but after the organization of the cohort. Because both exposure and examination of outcomes occur in the past, it is often difficult to distinguish these study designs in EHR data. The easiest way to tell a case/control study design from a cohort design is to check whether the study looks forward or backward.
[INSERT EXHIBIT; convert to gray scale; make ovals transparent (no shading)]
EXHIBIT 2.14 Historical Cohort and Case/Control Studies
[image:]
	
[bookmark: _Toc520966125][END EXHIBIT]
[H2] Example of Forward Look for Readmissions
An example may demonstrate the issues that arise in defining either the cohort or the study design. Suppose we want to study 30-day readmissions among heart failure patients in a hospice program. To begin with, let us assume that we want to do a cohort study, meaning that we define a group of heart failure patients in hospice and see how many of them have readmission within 30 days. In this situation, the exposure is to “hospice” and the outcome of interest is 30-day readmission. Hospice can affect readmissions in different ways. One scenario is that hospice use reduces active treatment—therefore, patients are less likely to be readmitted and will pass away without hospitalization. Another scenario is that hospice use may increase treatment, in part because hospice programs may fail to manage patients’ dyspnea (shortness of breath). Families troubled by breathing problems of their loved one may choose to return to active treatment. What we know from the medical literature is that many heart failure patients die within a few days of hospice admission; if the patient dies in a hospital that would count as a hospital readmission within 30 days.
To settle whether hospice use increases or decreases readmissions, the statistician must look at data. If she wants to use the cohort study design, the first step is to define the exposed and unexposed cohorts.
	One has to define two groups of patients, each constituting a different cohort (see exhibit 2.15). The first group is the exposed group. These are heart failure patients who use hospice care; we refer to these as patients as discharged to hospice, even if the patient is admitted to hospice after a short stay at home. To sharpen the contrast between the exposed and unexposed groups, we would need to exclude all patients who do not have a primary diagnosis of heart failure hospitalization.
[INSERT EXHIBIT; render in gray scale; make ovals transparent (no shading)]
EXHIBIT 2.15 Cohort Study of Impact of Hospice on Readmissions
[image:]
[END EXHIBIT]
	The definition of the cohort requires the presence of both the index hospitalization for heart failure and hospice use; this is because calculation of 30-day readmission requires an index hospitalization, and exposure requires use of hospice. Therefore, the most reasonable definition of the cohort is that both conditions must be present. The exposed cohort is compared to the nonexposed cohort, which must have an index hospitalization but no hospice use. Note that patients who do not have heart failure are excluded from both the exposed and unexposed group. This is done to sharpen the contrast between the two groups.
	Exhibit 2.16 provides some scenarios regarding the overlap between index heart failure hospitalization and hospice use. Depending on how we define our cohort, some readmissions will be ignored, and therefore study findings will change. Patient A should not be part of the cohort because the index hospitalization occurs a long time before hospice use and therefore these two events are not co-occurring. In contrast, patient B has an index hospitalization near start of hospice and therefore this patient is considered part of the cohort. Patient C and patient D are part of the cohort because index hospitalization and hospice use co-occur. Patient E is not part of the cohort because index hospitalization occurs after hospice use. Patients A, E, and F are part of the unexposed cohort. Patient A and patient B are both part of the unexposed group, even though they show that at some point they had hospice use. For these two types of patients, hospice use and index hospitalization does not co-occur and therefore the conditions for the landmark event that defines the exposed cohort are not met.
[INSERT EXHIBIT; render in gray scale. Make yellow boxes light gray, blue items medium gray, and green boxes black]
EXHIBIT 2.16 Ways an Index Hospitalization and Hospice May Co-Occur
[image:]
Note: I = index hospitalization; R = readmission; yellow bar = hospice use
[END EXHIBIT]
[bookmark: _Toc520966126][H2] Example of Backward Look for Hospice
If we were to use a case/control study design, the cases are defined as all patients who have a 30‑day readmission (see exhibit 2.17). The controls are all patients who do not have a 30‑day readmission. The frequency of hospice use is counted among the cases and controls. We start with the outcome (readmission or no readmission) and look back for hospice use. In some senses, defining the case/control study is easier, as the statistician need not define the co-occurrences of index hospitalization and hospice use.
[INSERT EXHIBIT; render in gray scale; make ovals transparent (no shading)]]
EXHIBIT 2.17 Case/Control Study Design
[image:]
[END EXHIBIT]
[bookmark: _Toc520966127][H1] Confusion in Unit of Analysis and Timing of Covariates
Our discussion of the definition of the cohort or case/control studies has not addressed two important points. The first is the unit of the analysis. If the unit of analysis is admission, then we might have multiple admissions for the same person, removing the assumed independence among the observations. The advantage of relying on admission as a unit of analysis has to do with the fact that clinicians will judge the need for hospice on each admission; we would be analyzing the data in the way that clinicians will be using the findings from the study.
The other alternative is one observation per person. This ensures independence of observations. Each patient has one value, and the value is independent of other observations. For patients who have multiple hospitalizations or instances of hospice utilization, we have options. The user could choose one of the observations randomly, or we could choose the first or last observations. These choices will also affect study findings.
Consider, for example, the cohort design. If we choose the first time that index hospitalization and hospice use co-occur, then we have more of a chance to observe another hospitalization. If we choose the last one, by definition we would not see the rehospitalization. If we choose randomly, there is a chance we may choose the last one, which would again distort the findings. To maximize the possibility of finding another rehospitalization, choose the first co‑occurrence of index hospitalization and hospice use. A similar logic applies to case/control study design. The probability of finding hospice use increases when we choose the last readmission. Therefore, in case/control studies, it may be more important to look at the last 30‑day readmission, not the first. Choosing randomly will still distort the finding if we happened to randomly choose the first 30‑day readmission.
	The second issue is the period in which we observe covariates. Cases and controls as well as exposed cohorts and unexposed cohorts differ in more ways than hospice use. It is important to identify these covariates and statistically control for them. For exposed/unexposed cohorts, the covariate must occur before the landmark time of the cohort. For case/controls, the covariates must also occur before the exposure to hospice (some exceptions apply; e.g., death during hospice). In other words, covariates should be measured at a time frame when clinicians have access to these data. Only then can they choose a different course of action based on the medical history of the patient. In EHRs, information about patients is available even after the point of the clinical decision. Using this information could help improve accuracy, but doing so is unwise, as it is not available at the point of decision-making.
[bookmark: _Toc520966128][H1] Summary
This chapter introduced SQL and its use in cleaning data from EHRs.
[bookmark: _Toc520966129][H1] Supplemental Resources
A problem set, solutions to problems, multimedia presentations, SQL code, and other related material are on the course website.
[H1] Reference
Alemi, F., J. Rice, and R. Hankins. 1990. “Predicting In-hospital Survival of Myocardial Infarction: A Comparative Study of Various Severity Measures.” Medical Care 28 (9): 762–75.

60

image3.jpeg
Combined Table

From Encounters Table

From Dx Codes Table

Patient | Provider Date
D D IDiagnosis ID| Code Description
1001 12 1 1/12/2020 | 410.05 Acute myocardial infarction of anterolateral wall
Null Null Null Null 250 Diabetes mellitus without mention of complication
Null Null Null Null 250.01
Null Null Null Null 410.05 Acute MI of anterolateral wall
123 240 5 1/12/2020 250 Diabetes mellitus w/out mention of complication
150 2555 6 9/12/2021 Null Null
Null Null Null Null 410.09 Acute myocardial infarction of unspecified source

image4.jpeg
Diabetes

Over weight

Antibiotic
Treatment

Survival

Infection

image5.jpeg
Case Control Study

Exposed

Cases with
Disease

Un-
exposed

Exposed

Un-
exposed

Exposed
Cohort

Un-

exposed
Cohort

Cohort Study

image6.jpeg
Cohort Study 1

Hospice
Discharge

30 day Re-
admit

No
Hospice

30 day re-
admit

image7.jpeg
Patient A
Patient B
Patient C
Patient D

0<30 da? 0
o<30 da? 0

0=>0

0<30 da? 0

Chronological Time

>

image8.jpeg
Exposed
to Hospice

Exposed
to Hospice

image1.jpeg
Firstname
Lastname
Zipcode
Streetnumber
Streetname
City

State

DOB

Email
Telephone
(Comments

PatientlD
ProviderID

Diagnosis
Treatment
Date

image2.jpeg
Combined Table

From Encounters Table

From Dx Codes Table

Patient | Provider Date
D D IDiagnosis ID| Code Description
1001 12 1 1/12/2020 | 410.05 Acute myocardial infarction of anterolateral wall
Null Null Null Null 250 Diabetes mellitus without mention of complication
Null Null Null Null 250.01
Null Null Null Null 410.05 Acute MI of anterolateral wall
123 240 5 1/12/2020 250 Diabetes mellitus w/out mention of complication
Null Null Null Null 410.09 Acute myocardial infarction of unspecified source

