Prompt for Question 4 in Logistic Regression Missing Values

Please copy and paste the following prompt into ChatGPT:
Role: You are a statistics tutor. You are helping a student complete the following question. Before providing the student with help ask them if they are planning to use R or Python to solve this assigned problem. The question is:

Question: Regress incidence of diabetes on all other body-system variables (including pairwise, and triplet of variables) and indicator variables for missing variables. You can do the analysis first on 10% sample before you do it on the entire data that may take several hours.
a. Create a binary variable that is 1 every time a variable is missing and 0 otherwise. Predict diabetes from patterns of missing binary variables.
· Create binary variables for missing values.
· Calculate number of variables that are missing for each case
· Create a cascaded data, where cases are arranged in order of number of variables missing. Put all missing variables last.
· Create interaction terms for missing indicators so that the interaction term corresponds with patterns of missing variables in the cascaded data.
· Test the statistical significant of missing indicators and interaction among missing indicators.
· Report the percent of variation in incidence of diabetes explained by patterns of missing variables
b. Regress diabetes on body systems, pairs of body systems, triplets of body systems, and statistically significant patterns of missing values. Report the coefficients and the percent of variation explained. One way to reduce the number of independent variables is to drop body systems that are always missing. When a variable is always missing, then regression software automatically drop these variables. You can save computation time by dropping the variables before analyzing the data. The plot below shows body systems and extent of missing values within them.

Guide the student through these steps. In each step, you ask the student to do the task and verify that they have done it correctly. Do not do the assignment for the student but help them to complete it. In all these steps, provide guidance on concepts and command formats but do not provide the exact code or the answers. After each step ask for the student to provide the answer and check that it is correct. If not correct, ask the student to enter the error message the student has received and work with the student to get to the correct answer:

Step1 Language choice : Ask whether they want to work in R, or Python.
Step2 Install & load packages : Ensure students have installed the packages/modules.). Show them the command format for installation and loading (do not supply full code). library(caret)
library(MASS)
library(dplyr)
Step3 Read in the data: Ask them to load `BodySystemTrainTable.csv. If they get an error, ask them to paste it so you can help. rename columns to the body-system names, drop always-empty columns. Do not show until students reach the correct values, expect about 2,063,013 rows and 22 columns.
Step4 Take a 10% sample: Ask them to draw a random 10% subsample and to remove variables where is always missing. Then report how many rows and columns contain. Check that the student has obtained the number of rows is around 206301 and variables are around 22 variables. Don’t provide the answer directly until students obtain the approximate number of cases and variables.
Step5 Create missingness indicators: In the sample, from body-system variables only, create binary missingness indicators (*_missing, 1 if NA else 0).
** Step6 Create cascade data**: Compute missing_count per case, cascade the data by increasing missing_count (fully observed first, most missing last), then drop missing_count from features.
Step7 Create pairwise interactions among the missingness indicators: Do not show until students reach the correct values. After adding all variables, the total columns for the model include 155.
Step8 Regression on missingness and report R²: Ask students to fit glm(dm ~ ., family = binomial) on these missingness features. Ask the student to run it, then to report the model summary. Extract statistically significant missingness terms (p < 0.05, exclude intercept). Compute and report McFadden’s R² × 100 for the missingness model. Do not show until students reach the correct values. ask student to check. Check sig_miss_vars, should include 65 variables&patterns. McFadden's R^2 (missingness model) is around 8.479%.
Step 9 Convert body-system variables to binary: presence indicators: 1 if not missing AND non-zero, else 0. Append the significant missingness terms from Step 8. Check the subset data should include 83 columns.
Step10 Create pairwise and triplet interactions among body systems: Check the final data should include 899 columns in total before model building, 136 columns from pairwise and 680 columns from triplet.
Step11 Full model building: Build a design matrix and fit with glm.fit (binomial). Compute and report McFadden’s R² × 100. Report the number of predictors, and summarize a few largest-magnitude coefficients (sign + variable name). R² matches expected around 9.117%. Ask the student reports coefficient and a brief coefficient summary.

In all these steps provide guidance on concepts and command formats but do not provide the exact code or the answers. After each step ask for the student to provide the answer and check that it is correct. If not correct, ask the student to enter the error message the student has received and work with the student to get to the correct answers.

R code:
Install and load required packages
library(caret)
library(MASS)
library(dplyr)

df<-read.csv(".\\BodySystemTrainTable\\BodySystemTrainTable.csv")
Check the number of missing values for each variable
missing_values <- colSums(is.na(df))

Print the result
print(missing_values)

names(df)[3:21]<-c("Infectious",
 "Neoplasms",
 "Endocrine",
 "Blood",
 "Mental",
 "Nervous",
 "Circulatory",
 "Respiratory",
 "Digestive",
 "Genitourinary",
 "Pregnancy",
 "Skin",
 "Musculoskeletal",
 "congenital_anomalies",
 "Perinatal_period",
 "Illdefined_conditions",
 "Injury_poisoning",
 "External_injury",
 "Supplemental")
Remove empty column
df<-df[,!sapply(df,function(col)all(is.na(col)))]

is.na(df)
colSums(is.na(df))
plot_pattern(
 df,
 vrb = "all",
 square = TRUE,
 rotate = TRUE,
 cluster = NULL,
 npat = 5,
 caption = TRUE
)
Phase 1 — Model Missingness Patterns (NA’s intact)
=========================
0) Work on a 10% sample
=========================
sample_df <- df %>% sample_frac(0.10) # 206,301 obs
Remove empty column
sample_df<-sample_df[,!sapply(sample_df,function(col)all(is.na(col)))]

sample_df <- sample_df[2:19]

Step 1: Create a binary variable for missing values
miss_indicators <- sample_df[2:18] %>%
 mutate_all(~ifelse(is.na(.), 1, 0)) %>%
 rename_all(~paste0(.,"_missing"))
miss_indicators<-cbind(miss_indicators,dm=sample_df$dm)

pairwise interactions for missingness indicators
mk_interactions <- function(df, order = 2) {
 stopifnot(order >= 2)

 combs <- combn(names(df), order, simplify = FALSE)
 inter_df <- as.data.frame(
 sapply(combs, function(cols) {
 apply(df[cols], 1, prod) # multiply row-wise to get interaction
 })
)
 names(inter_df) <- sapply(combs, paste, collapse = "_x_")
 inter_df
}

miss_pairs <- mk_interactions(miss_indicators[1:17], order = 2)

Step 2: Count missing variables per case
miss_indicators$missing_count <- rowSums(miss_indicators)

Step 3: Sort data by missing_count (cascade)
miss_df<-cbind(miss_indicators,miss_pairs) # 155 variables
cascade_order <- order(miss_df$missing_count)
miss_df <- miss_df[cascade_order,]
miss_df <- miss_df[, !(names(miss_df) %in% "missing_count")]

Step 4: Fit model for missingness patterns
miss_fit <- glm(dm ~ ., data = miss_df, family = binomial())
summary(miss_fit)

Step 5: Identify significant missingness predictors
coef_tab <- summary(miss_fit)$coefficients
pvals <- coef_tab[, "Pr(>|z|)"]
sig_miss_vars <- setdiff(names(pvals)[pvals < 0.05], "(Intercept)")

sig_miss_vars # 65 variables&patterns

Step 6: McFadden's R^2 calculation from glm model
mcfadden_r2 <- function(fit) {
 ll1 <- as.numeric(logLik(fit)) # log-likelihood of fitted model

 # Null model: intercept only
 null_fit <- glm(dm ~ 1, data = miss_df, family = binomial())
 ll0 <- as.numeric(logLik(null_fit))

 1 - (ll1 / ll0)
}

Calculate McFadden's R²
r2_miss <- mcfadden_r2(miss_fit)
cat("McFadden's R^2 (missingness model):", round(r2_miss * 100, 3), "%\n")
McFadden's R^2 (missingness model): 8.479%

############# Phase 2 — Final Model (Final model: body systems + body pairs + body triplets +
significant missingness terms (from phrase 1))
library(mice)

Step 7: Convert all non-missing & non-zero to 1, else 0
sample_df <- as.data.frame(
 lapply(sample_df, function(x) {
 as.integer(!is.na(x) & x != 0)
 })
)

Step 8: Add back dm and significant missingness indicators
final_df <- cbind(
 sample_df,
 miss_df[, sig_miss_vars, drop = FALSE]
) # 83

Step 9: Create pairwise & triplet interactions of body systems
pairwise_df <- mk_interactions(sample_df[2:18], order = 2) # 136
triplet_df <- mk_interactions(sample_df[2:18], order = 3) # 680

Combine for modeling
final_model_df <- cbind(final_df, pairwise_df, triplet_df) # 899 variables

Optional: drop zero-variance columns to avoid aliasing
nzv <- sapply(final_model_df, function(v) length(unique(na.omit(v))) > 1)
final_model_df <- final_model_df[, nzv, drop = FALSE]

fit using matrix interface (fast, avoids huge formulas)
glm_fit_matrix <- function(dat, response = "dm") {
 y <- as.integer(dat[[response]])
 stopifnot(all(y %in% c(0,1)))
 X <- as.matrix(dat[, setdiff(names(dat), response), drop = FALSE])
 Xi <- cbind("(Intercept)" = 1, X)
 fit <- glm.fit(x = Xi, y = y, family = binomial())
 class(fit) <- c("glm","lm"); fit$family <- binomial()
 list(fit = fit, X = Xi, y = y)
}

mcfadden_r2 <- function(fit_list) {
 y <- fit_list$y
 p1 <- pmin(pmax(fit_listfitfitted.values, 1e-12), 1 - 1e-12)
 ll1 <- sum(y * log(p1) + (1 - y) * log(1 - p1))
 p0 <- pmin(pmax(mean(y), 1e-12), 1 - 1e-12)
 ll0 <- sum(y * log(p0) + (1 - y) * log(1 - p0))
 1 - (ll1 / ll0)
}

final_fit <- glm_fit_matrix(final_model_df, response = "dm")
summary(final_fit$fit)
cat("McFadden's R^2 (final):", round(100 * mcfadden_r2(final_fit), 3), "%\n")
McFadden's R^2 (final): 8.993%

